

IMMUNOTHERAPY FOR PATIENTS WITH ACTIONABLE GENOMIC ALTERATIONS

Fabrice BARLESI, MD, PhD

Paris Saclay University / Gustave Roussy Paris, France

Paris, Friday 15th 2024

DECLARATION OF INTERESTS

Personal financial interests:

• None (since August 2021)

Institutional financial interests:

 Abbvie, ACEA, Amgen, Astra-Zeneca, Bayer, Bristol-Myers Squibb, Boehringer–Ingelheim, Eisai, Eli Lilly Oncology, F. Hoffmann–La Roche Ltd, Genentech, Ipsen, Ignyta, Innate Pharma, Loxo, Novartis, Medimmune, Merck, MSD, Pierre Fabre, Pfizer, Sanofi-Aventis, Summit Therapeutics and Takeda

Non-financial interests:

 Principal Investigator for Astra-Zeneca, BMS, Innate Pharma, Merck, Mirati, Pierre Fabre and F. Hoffmann-La Roche, Ltd, sponsored trials (or ISR)

No other conflicts of interest

- . Standard Checkpoints Inhibitors
- . The role of VEGF inhibition
- . TKIs and ICI combinations
- . Current guidelines
- . What the biology of AGA is telling us?
- . What's next?

STANDARD CHECKPOINTS INHIBITORS

Alone or in combination (after TKI(s) exhaustion)

PD(L)1 MONOTHERAPY

Registry (Immunotarget)

Table 2	2 Immune checkpoint inhibitor efficacy outcomes in various molecular alterations								
		Best respo	Best response (%)		PFS	PFS			
Driver	n	CR/PR	SD	PD	Median (months)	6 month PFS (%)	1 year PFS (%)	Median (months)	
BRAF	38	28.1	28.1	43.8	3	35	19	13.6	
KRAS	252	27.2	23.1	49.8	3.2	39	26	13.5	
ROS1	5	20	0	80	NA	NA	NA	NA	
MET	36	15.6	34.4	50	3.4	33	23	18.4	
EGFR	110	11	18	71	2	16	6	8.8	
HER2	23	9.5	28.6	61.9	3.5	34	17	10	
RET	14	7.1	21.4	71.4	2.2	16	8	6.5	
ALK	18	0	21.4	78.6	2.1	16	8	17	

PD(L)1 MONOTHERAPY

Subgroup analysis from randomized trials

PD(L)1 MONOTHERAPY

EGFRm subgroup analysis from randomized trials

Trial	Hazard Ratio (95% CI)	Favors PD-1/PD-L1 Inhibitor	Favors Docetaxel	Weight, %
EGFR mutated			•	
ОАК	1.24 (0.71-2.18)			3.5
CheckMate 057	1.18 (0.69-2.02)		•	3.9
Keynote 010	0.88 (0.45-1.72)			2.5
POPLAR	0.99 (0.29-3.40)			- 0.7
Subtotal	1.11 (0.80-1.53)	<	>	10.6
Heterogeneity: $\chi_3^2 = 0.69$, $P = .88$; $I^2 = 0\%$				
Test for overall effect: $z = 0.61$ ($P = .54$)			- - - -	

EGFRm dedicated randomized trial: KN789 study

EGFRm dedicated randomized trial: KN789 study

Yang JC, et al. J Clin Oncol 2023;41(suppl 16):Abstr LBA9000

EGFRm dedicated randomized trial: CM722 study

EGFRm dedicated randomized trial: CM722 study

PD(L)1 & CTLA4 & CHEMOTHERAPY

EGFRm dedicated randomized trial: Illuminate

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

PD(L)1 & CTLA4 AFTER CHEMOTHERAPY

EGFRm dedicated randomized trial: Checkmate 722

THE ROLE OF VEGF INHIBITION

Combined with PD(L)1 inhibitors +/- chemotherapy

PD(L)1 & CHEMOTHERAPY+VEGFi

EGFRm subgroup analysis of IMP150 randomized trial

Socinski, et al. ASCO 2018 (Abs 9002); Kowanetz, et al. AACR 2018 (Abs CT076)

PD(L)1 & CHEMOTHERAPY+VEGFi

EGFRm dedicated randomized trial: ABC study

The observed 12-m PFS rate of 25% with either ABCPac or ABPem was below the aspired rate of 37%.

ESM

PD(L)1 & CHEMOTHERAPY+VEGFi

EGFRm/ALK dedicated randomized trial: ATTLAS, KCSG-LU19-04 study

	ABCP arm (n=154)	PC arm (n=74)
Events, n (%)	114 (75.5)	63 (85.1)
mPFS, mo (95%CI)	8.48 (8.18, 10.28)	5.62 (4.27, 7.22)
HR (95%CI); p-value	0.62 (0.45, 0	0.86); 0.004

	ABCP arm (n=154)	PC arm (n=74)		
Events, n (%)	83 (55.5)	42 (56.8)		
mOS, mo (95%CI)	20.63 (18.14, 25.59)	20.27 (14.29, 26.12)		
HR (95%CI); p-value	1.01 (0.69, 1.46); 0.975			

Ahn M-J, et al. Ann Oncol 2023;34(suppl):Abstr LBA67

PD(L)1 & CHEMOTHERAPY+VEGFi AFTER EGFR-TKI

EGFRm dedicated randomized trial: Orient-31 study

Gender (male vs. female), brain metastases (yes vs. no)

Primary endpoint

• PFS (RECIST v1.1) for Arm B vs. C in this second interim analysis

Secondary endpoints

• ORR, safety

Arm C

125 (78.1)

4.3 (4.1, 5.3)

27

0

0

30

0

0

PD(L)1 & CHEMOTHERAPY+VEGFi AFTER EGFR-TKI

EGFRm dedicated randomized trial: Orient-31 study

PD(L)1 & CHEMOTHERAPY+VEGFi

EGFRm/ALK dedicated randomized trial: summary

Trial	IMpower150	IMpower 5	ATTLAS (KCSG-LU19-04)	ORIENT-3 I
Country	26 countries	China	Korea	China
Treatment arm	Atezolizumab plus bevacizumab and chemotherapy (ABCP, N=34)	Atezolizumab plus bevacizumab and chemotherapy (ABCP, N=81)	Atezolizumab plus bevacizumab and chemotherapy (N=154)	Sintilimab plus IB305 plus chemotherapy (N=158)
Comparator arm	Atezolizumab plus carboplatin plus paclitaxel (ACP, N=45)	Bevacizumab and chemotherapy (BCP, N=82)	Paclitaxel and carboplatin (N=74)	Sintilimab plus chemotherapy (N=156)
	Bevacizumab plus carboplatin plus paclitaxel (BCP, N=43)			Chemotherapy alone (N=160)
EGFR mutation (N)				
Exon 19 deletion	15	50	70	80
Exon 21 L858R	11	26	75	70
T790M	1	14	NA	NA
Other	7	5	2	8
Post-3G TKI alone (quad arm)	0%	17.9% (N=14)	8.2% (N=12)	11% (N=7)
Smoking				
Current or former	14	NA for subgroup analysis	57	47
Never	20	5573) in	97	111
Brain metastasis (N)	NA for subgroup analysis	NA for subgroup analysis	67	59
Primary endpoint	PFS and interim OS in the ITT wild-type population (excluding <i>EGFR</i> or <i>ALK</i> alteration)	Investigator-assessed PFS in the ITT population	Investigator-assessed PFS	IRRC-assessed PFS
Efficacy endpoints				
ORR	42%	NA for subgroup analysis	69.5%	45%
Median PFS (months)	10.2 (HR, 0.61, 95% CI: 0.36–1.03)	8.5 (HR 0.86, 95% CI: 0.61-1.21)	8.48 (HR 0.62, 95% CI: 0.45–0.86)	7.2 (HR 0.74, 95% CI: 0.57–0.97)
Median OS (months)	NR (HR 0.61, 95% CI: 0.29-1.28)	NA for subgroup analysis	20.63 (HR 1.01, 0.69-1.46)	21.1 (95% Cl: 17.5-23.9)
Grade 3 or worse TRAEs	64%		53%	56%
Approvals				
FDA	No		No	No
EMA	Yes		No	No

Abbreviations: CI, confidence interval; *EGFR*, epidermal growth factor receptor; EMA, European Medicines Agency; FDA, Food and Drug Administration; HR, hazard ratio; IC, immune cells; IRRC, independent radiologic review committee; intention-to-treat, ITT; N, number; NA, not applicable; NR, not reached; ORR, objective response rate; OS, overall survival; PD-L1; programmed death-ligand 1; PFS, progression-free survival; TC, tumor cells; TRAEs, treatment-related adverse events.

TKIs & ICI COMBINATIONS

Anything but easy

PD(L)1 & EGFR-TKI*

Early phases studies

		-		
Author, phase	Intervention	N = number of participants	Response rates %	Toxicity
EGFR positive			r	
Yang <i>et al.</i> <mark>[</mark> 2019], phase I/II	TKI: erlotinib; gefitinib arm closed due to toxicity; ICI: Pembrolizumab	12	41.7	No G4 events; G3 AE 33%; ALT increased G1/2 25%; AST increased G1/2 25%; gefitinib arm closed due to G3/4 hepatotoxicity in 71.4% patients
Creelan <i>et al.</i> [2019], phase I	TKI: Gefitinib; ICI: Durvalumab	56	63	70%; combination therapy was associated with high discontinuation rate due to hepatotoxicity (>50%)
Gettinger <i>et al.</i> [2018], phase I	TKI: Erlotinib; ICI: Nivolumab	20	15	G3 events - 25% [5] • Raised AST [1] • Raised ALT [1] • Diarrhoea [2] • Weight loss [1]
Ahn <i>et al.</i> [2016], TATTON, Phase Ib	TKI: Osimertinib; ICI: Durvalumab	44	38	38% interstitial lung disease like events
Rudin <i>et al.</i> [2018], Phase Ib	TKI: Erlotinib; ICI: Atezolizumab	28	75	G3 AE in 43% • ALT rise 2 • Pyrexia 2 • Rash 2 • Diarrhoea 2

TKI, tyrosine kinase inhibitor, ICI, immune checkpoint inhibitor; G3, grade 3; G4, grade 4; AE, adverse event.

PD(L)1 & ALK-TKI*

Early phases studies

Author, phase	Intervention	N = number of participants	Response rates %	Toxicity
ALK positive				
Spigel <i>et al.</i> [2018], Phase I/II	TKI: Crizotinib, ICI: Nivolumab	13	38	38% developed severe hepatoxicity leadingto discontinuation of this combination;2 patients died from their hepatotoxicity
Shaw <i>et al.</i> [2018], JAVELIN 101	TKI: Lorlatinib; ICI: Avelumab	28	46.4	54%; high triglycerides 14.3%; GGT increase 10.7%
Kim <i>et al.</i> [2018]	TKI: Alectinib; ICI: Atezolizumab	21	81	G3 62%; Rash/ALT rise/Pneumonitis
Felip <i>et al.</i> [2020], Phase Ib	TKI: Ceritinib, ICI: Nivolumab	36	First line 450 mg: 83; 300 mg: 60; Second line 450 mg: 50; 300 mg: 25	ALT rise 25%; GGT rise 22%; Amylase 14%

TKI, tyrosine kinase inhibitor; ICI, immune checkpoint inhibitor; G3, grade 3; G4, grade 4.

McLean L, et al. TLCR 2021 * few patients treated in 1st line

OTHER CHECKPOINTS INHIBITORS CTLA4 (Tremelimumab) / EGFRi (Gefitinib)

aseline demographic and disease characteristics.			
Clinical characteristics	N=27 (%)		
Age, years [range]	63 [41-76]		
Gender			
male	9 (33)		
female	18 (67)		
Smoking status			
non-smokers	18 (67)		
former smokers	9 (33)		
current	0		
former	9		
ECOG PS			
0	18 (67)		
1	9 (33)		
Histology			
adenocarcinoma	27 (100)		
EGFR sensitizing mutation type			
EGFR exon 19 deletion	19 (70)		
EGFR exon 21 L858R mutation*	5 (19)		
EGFR exon 18 [°]	3 (11)		
Stage disease at study initiation			
IVA	14 (52)		
IVB	13 (48)		
Metastatic sites			
Lung	18 (67)		
Liver	1 (4)		
Bone	12 (44)		
Adrenal	2 (7)		
Lymph nodes	8 (30)		
Pleural	7 (26)		
Brain	4 (15)		
Number of treatment lines			
1 (GEFTREM 2L)	14 (52)		
>2 (GEFTREM>3L)	13 (48)		
First line treatment prior GEFTREM			
Erlotinib	6 (22)		
Gefitinib	14 (52)		
Platinum-based chemotherapy	7 (26)		
Radiotherapy before clinical trial/sites			
No	18 (67)		
Yes	9 (33)		
brain	4		
bone	4		
mediastinum	1		
ARE CRACE CARROLLE	-		

	Patients	
	N=27 (%)	
Objective response		
complete response	0	
partial response	0	
Stable disease	18 (67)	
Progressive disease	7 (26)	
Not evaluable*	2 (7)	
Progression-free survival		
Number of events	27	
Median PFS, months (95% CI)	2.2 (1.8-4.2)	
GEFTREM 2L	4.2 (1.8-10.3)	P 0.01
GEFTREM \geq 3L	1.8 (1.3-2.5)	
Overall survival		
Number of events	27	
Median OS, months (95% CI)	14.5 (7.1-37.8)	
GEFTREM 2L	24.4 (13.4-NR)	P 0.03
GEFTREM \geq 3L	9.7 (3.3-14.3)	
OS rate (%)		
1-year	55	
2-year	33	
3-year	22	
0% 0% 0% 0% 0% 0% 0% 0% 0% 0%		2L GEFTREM ≥3L GEFTREM * exon 19 deletin
	• •	
0%		•

Treatment outcomes of the combination of tremelimumab and sefitinib

In patients with SD, out of 114 blood biomarkers, a significant increase of memory CD4+, conventional CD4+ICOS+, ICOS+ regulatory (Treg) and CD103+ β 7+CD8+T cells (α E β 7+CD8+T cells) was observed

THE SPECIAL CASE OF KRASm

Special genomic, immune contexture and management

KRASm AS A SPECIFIC AGA

Selected results

KRASm AS A SPECIFIC AGA

Attention to some subgroups

Oncogenic driver	Anti-PD-(L)1 antibody-based treatment	n	ORR (%)	Median PFS (months)
KRAS mutations (any)	Anti-PD-(L)1 antibody monotherapy	246	26	3
	Anti-PD-(L)1 antibody monotherapy	135ª	37ª	NR
	Anti-PD-(L)1 antibody monotherapy	162	19	3
	Anti-PD-(L)1 antibody monotherapy	87 (MDACC cohort) 527 (CGDB cohort)	24 NR	3 4
	Sotorasib+pembrolizumab or atezolizumab	58	29	NR
	Chemotherapy+anti-PD-(L)1 antibody	219ª	46 ^a	NR
	Chemotherapy+bevacizumab+atezolizumab	80	NR	8
KRAS and TP53 co-mutations	Anti-PD-(L)1 antibody monotherapy	56 (SU2C cohort) 7 (CheckMate 057 cohort)	36 57	3 NR
	Chemotherapy+bevacizumab+anti-PD-(L)1 antibody	41	NR	14
KRAS and STK11 co-mutations	Anti-PD-(L)1 antibody monotherapy	54 (SU2C cohort) 6 (CheckMate 057 cohort)	7 0	2 NR
	Anti-PD-(L)1 antibody monotherapy	138	12	2
	Chemotherapy+bevacizumab+atezolizumab	34 ^b	NR	6.0 ^b
KRAS and KEAP1	Anti-PD-1/PD-L1 monotherapy	101	18	2
co-mutations	Chemotherapy+bevacizumab+atezolizumab	34 ^b	NR	6 ^b

CURRENT GUIDELINES

ESMO, NCCN & ASCO

ESMO GUIDELINES

2023 (ex. EGFRm patients)

Hendriks L, et al. Ann Oncol 2023

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

NCCN GUIDELINES v. 11/2024 (ex. EGFRm patients)

ASCO GUIDELINES

Nov. 12, 2024 (ex. EGFRm patients)

WHAT THE BIOLOGY OF AGA IS TELLING US?

Understand AGA genomic and TME specificities

PDL1 EXPRESSION

At baseline, controversial results (related to different assays but not only)

PDL1 EXPRESSION

A specific PDL1 expression mechanism with a possible adverse predictive value

Pandoll DM, Nat Rev Cancer 2012; Slomka J, et al. PLOSone 2024

TUMOR MUTATIONAL BURDEN

As expected, TMB is low in AGA

EGFR/ALK+ NSCLC has low TMB³

Variant	Median TMB
EML4-ALK	2.5
Non-EML4-ALK	2.7
ROS1 rearrangement	3.6
EGFR ex19del	3.6
EGFR L858R	3.8
BRAF V600E	3.8
EGFR T790M	4.5
MET ex14	4.5
KRAS mutation	9.0
BRAF non-V600E	10.8
POLE mutation	14.0
PD-L1 amplification	14.4
MSH2 alteration	18.0
MLH1 alteration	28.4

CHARACTERISTICS OF AGA IMMUNE CONTEXTURE

EGFRm as the example

Low TMB Unreliable PDL1 expression

Low level of immunostimulatory cytokines (CCL3, CXCL9 and CXCL10)

Globally, a TME enriched in immunosuppressive cells such as MDSCs, Treg and tumourassociated macrophages

High levels of immunosuppressive cytokines promoting MDSC and macrophages, from

- . Tumour cells (CCL18, CXCL1, CXCL3 and IL-1β)
- . T-cells (CCL4, CXCL17
- . and IL-1β)
- . Macrophages (CCL2 and CXCL17)

High levels of CD73 (adenosine)

CD8+ PDL1+ TILS

After EGFR-TKIs, an increase has been reported in some cases

Lack of T-cell infiltration and low proportion of PD-L1+/CD8+ TILs^{1,2}

		EGFR Mut+	EGFR TKIs trigger the secretion
	Pre-TKI (N=62)	Post-TKI (N=63)	of CXCL10 (which recruits CD8+ T cells) and suppress the
Concurrent PD-L1 expression and CD8+ TILs (IHC)			production of CCL22 (which
PD-L1+ (≥50%) & high CD8+ TILs (grade 2–3)	1/48 (2.1%)	1/43 (2.3%)	
PD-L1+ (≥5%) & high CD8+ TILs (grade 2–3)	1/48 (2.1%)	5/43 (11.6%)	recruits ireg cells)

Dong. Oncoimmunology 2017; Gainor, et al. Clin Cancer Res, 2016.

WHAT'S NEXT?

Overcome primary resistances to IO

VARIOUS OPTIONS

Theoritically

Immunogenic therapy

- Boost tumour immunogenicity
- Increase MHC I and II
 expression
- Elicit immunogenic cell death
- Release of DAMPs and PAMPs
- Upregulate expression of PD-L1
- Enhance DC maturation and antigen presentation
- Increase production of type I interferons

- Chemotherapy
- DDR-targeted therapies (PARP inhibitors)
- Epigenetic reprogramming
- Autophagy inhibition
- Anti-AXL agents
- MEK inhibitors

Immunostimulatory therapy

- Increase production of type I and II interferons
- Increase T cell activation and co-stimulation
- Recruit T cells and NK cell to the tumour
- Promote T cell memory phenotype

- Immune-checkpoint inhibitors (antagonistic antibodies targeting PD-(L)1, CTLA4, TIGIT, LAG3, TIM3 or BTLA)
- Co-stimulatory agonist targeting CD27, CD28, OX40, CD137 or GITR
- Anti-CD73 agents or other adenosine pathway inhibitors
- Anti-VEGF/VEGFR agents

CAR T CELL / CELL THERAPY

EGFRm in vitro / mouse model

Hours following initial stimulation Days following stimulation Days following stimulation

TILS / CELL THERAPY

EGFRm in vitro / in vivo

Expansion of Tumor-Infiltrating Lymphocytes in Non-Small Cell Lung Cancer: Clinical Potential and Efficacy in EGFR Mutation Subsets

TILs expansion from 103 primary NSCLCs TIL expansion observed in all cases, including EGFRm. Increase in the median CD4⁺/CD8⁺ ratio and IFN-γ secretion in 13 out of 16 cases, including all three cases with EGFR mutations.

The cytotoxicity assay revealed enhanced tumor cell death in three of the seven cases, two of which had *EGFR* mutations.

In vivo functional testing in xenograft model showed a reduction in tumor volume.

PD(L)1 & TKI: IMPACT OF THE SEQUENCE

Illustration with the DreamSeq trial (BRAF^{V600m} Melanoma)

Primary endpoint: 2-year landmark OS (70% vs 50%)

 90% power 2-year OS rate of 70% in arm A to C sequence vs 50% in arm B to D, two-sided type I error rate of 0.05

WOULD PERIOPERATIVE STRATEGY LOOK DIFFERENTLY?

Neoadjuvant sintilimab & chemotherapy in *EGFRm* NSCLC: NEOTIDE/CTONG2104

 Highly resistant (Non-MPR+SD)
 Moderate response (Non-MPR+PR)
 Immune sensitive (MPR+PR)

 NOD05
 Immune sensitive (MPR+PR)
 Immune sensitive (MPR+PR)

 Immune sensitive (MPR+PR)
 Immune sensitive (MPR+PR)
 Immune sensitive (MPR+PR)

 Immune sensiti

Zang C, et al. Cell Reports Med 2024

WOULD PERIOPERATIVE STRATEGY LOOK DIFFERENTLY?

Neoadjuvant sintilimab & chemotherapy in *EGFRm* NSCLC: NEOTIDE/CTONG2104)

TAKE HOME MESSAGES

- PD(L)1 Immune Checkpoints Inhibitors have low efficacy in advanced pts w AGA (except in KRASm & BRAFm)
 - . Alone
 - In addition to standard platinum-based chemotherapy
 - In addition to VEGF inhibition
- AGA TME is enriched in immunosuppressive cytokines and cells (MDSCs, Treg and TAM)
- . Targeted strategy (amivantamab) +/_ standard chemotherapy remains the SoC after TKI exhaustion
- New strategies (BiTES, Cell therapy, etc) are therefore being explored
- Extrapolation of these results in earlier setting should be made with caution

Thank You

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

X @barlesi

fabrice.barlesi@gustaveroussy.fr

