

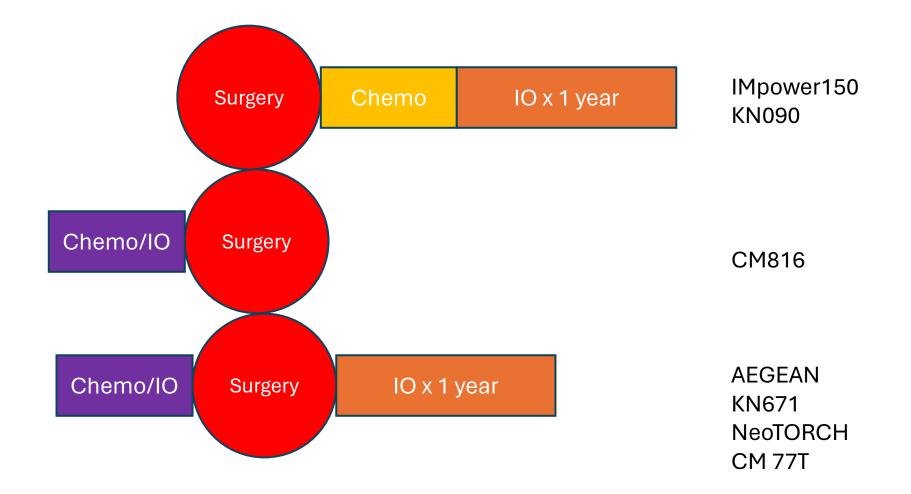
Do Biomarkers and MRD Matter?

Professor Tony Mok Li Shu Fan Medical Foundation Professor of Clinical Oncology The Chinese University of Hong Kong

COI Disclosure						
Grant/Research Support	AstraZeneca, Boehringer Ingelheim, Pfizer, Novartis, SFJ Pharmaceuticals, Roche, Merck Sharp & Dohme, Clovis Oncology, Bristol-Myers Squibb, Eisai, Taiho					
Speaker's Fees	AstraZeneca, Roche/Genentech, Pfizer, Eli Lilly, Boehringer Ingelheim, Merck Sharp & Dohme, Novartis, Bristol-Myers Squibb, Taiho					
Major Stock Shareholder	Prenetics Ltd					
Advisory Board	AstraZeneca, Roche/Genentech, Pfizer, Eli Lilly, Boehringer Ingelheim, Clovis Oncology, Merck Serono, Merck Sharp & Dohme, Novartis, SFJ Pharmaceutical, ACEA Biosciences, Vertex Pharmaceuticals, Bristol-Myers Squibb, geneDecode, OncoGenex, Celgene, Ignyta, Cirina					
Board of Directors	AstraZeneca Ltd; HutchMed Ltd, Insigta Ltd.					

Does it matter?

Does it matter? To whom? For what? To patient For survival


Does it matter?

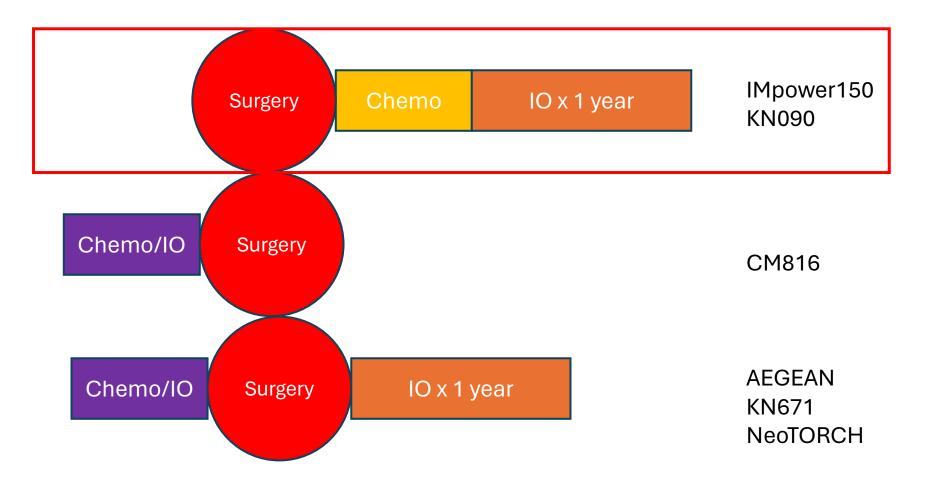
Does it matter?

Immunotherapy for early stage lung cancer

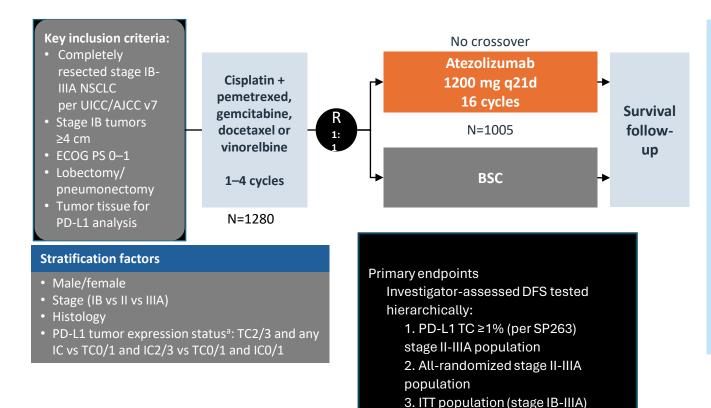
Biomarker matters if not all patients benefit equally from pre-operative chemo-IO or post-operative IO.

You can't walk properly in either case

Small feet in big shoes



Big feet in small shoes



Giving too much therapy for those who don't need it! Giving not enough therapy for those who need more!

The evolving landscape (as explained by Molly)

IMpower010 (primary results): Atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA NSCLC

Primary endpoints:

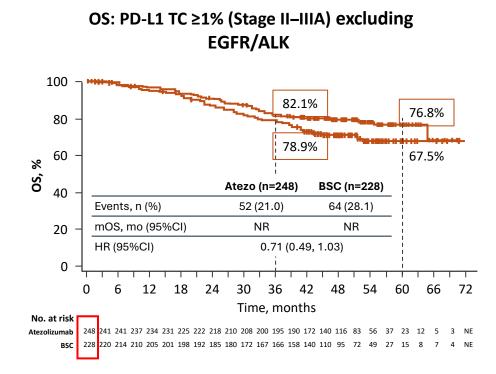
Investigator-assessed DFS tested hierarchically:

- PD-L1 TC ≥1% (per SP263) stage II-IIIA population
- All-randomized stage II-IIIA
 population
- ITT population (stage IB-IIIA)

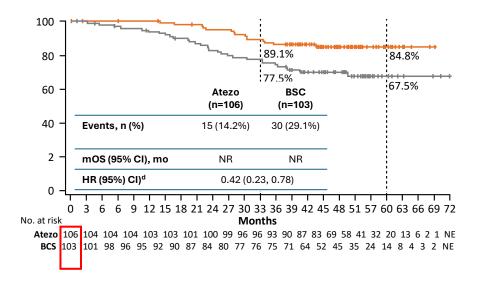
Key secondary endpoints:

- OS in ITT population
- DFS in PD-L1 TC \geq 50% (per
 - SP263) stage II-IIIA
- population
- 3-year and 5-year DFS in all
 3 populations

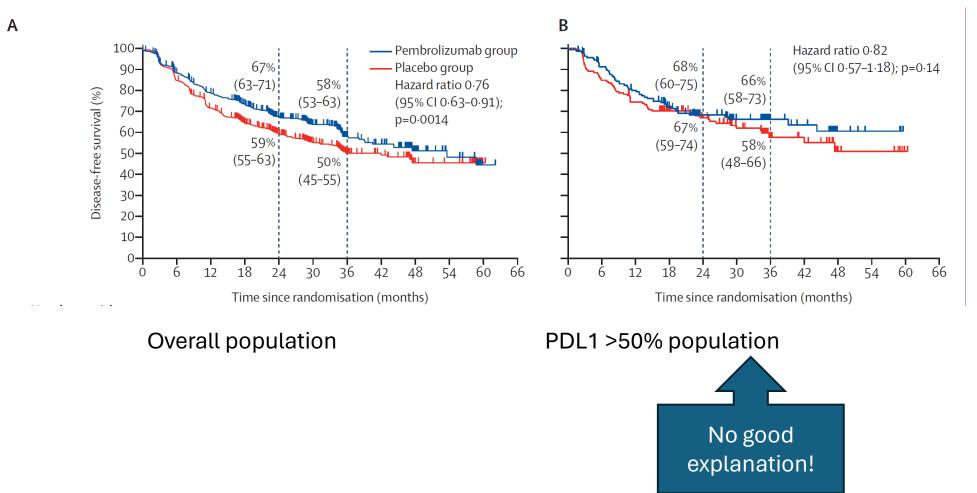
Felip et al Lancet 2021


The impact of PDL1 status on EFS with adjuvant IO

Stage						
IIA	147/295	NE (36·7–NE)	148/295	NE (31·0-NE)	⊢	0.68 (0.46-1.00)
IIB	90/174	37·1 (32·3-NE)	84/174	46·4 (32·0-NE)	⊢	0.88 (0.54–1.42)
IIIA	205/413	32·3 (25·4–NE)	208/413	29.7 (23.7-35.3)	⊢∳ -µ	0.81 (0.61–1.06)
PD-L1 status by SP263						
TC <1%	181/383	36·1 (30·2–NE)	202/383	37·0 (28·6–NE)	H-A-I	0.97 (0.72–1.31)
TC ≥1%	248/476	NE (36·1–NE)	228/476	35·3 (29·0–NE)	⊢ ♦ I	0.66 (0.49–0.87)
TC 1-49%	133/247	32·8 (29·4–NE)	114/247	31·4 (24·0-NE)	⊢	0.87 (0.60–1.26)
TC ≥50%	115/229	NE (42·3–NE)	114/229	35·7 (29·7–NE)		0.43 (0.27–0.68)
					i I	

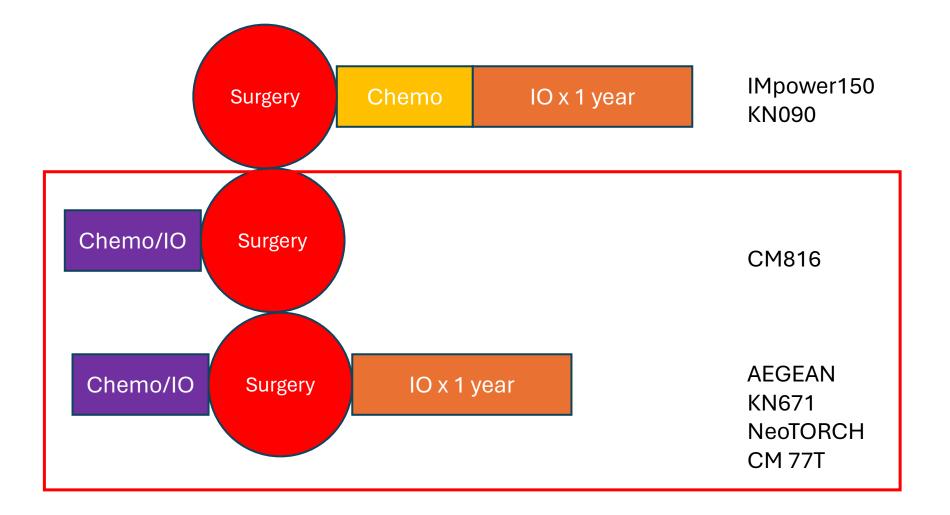

The benefit associated with the PDL1>1% is driven by the PDL1>50% population

Felip et al Lancet 2021


The impact of PDL1 status on OS with adjuvant IO

OS: PD-L1 TC ≥50% (Stage II-IIIA) excluding EGFR/ALK+

PEARL/KEYNOTE-091: DFS

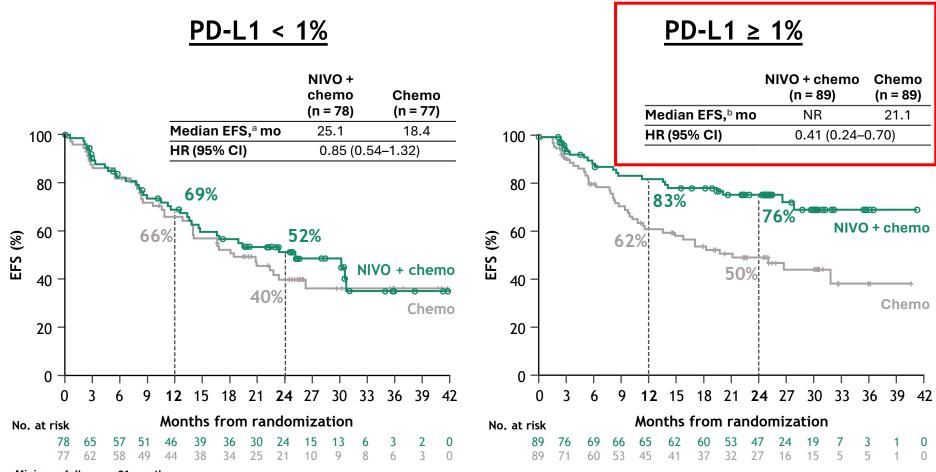


O'Brien et al Lancet Oncology 2022

Does PDL1 status matter for adjuvant IO?

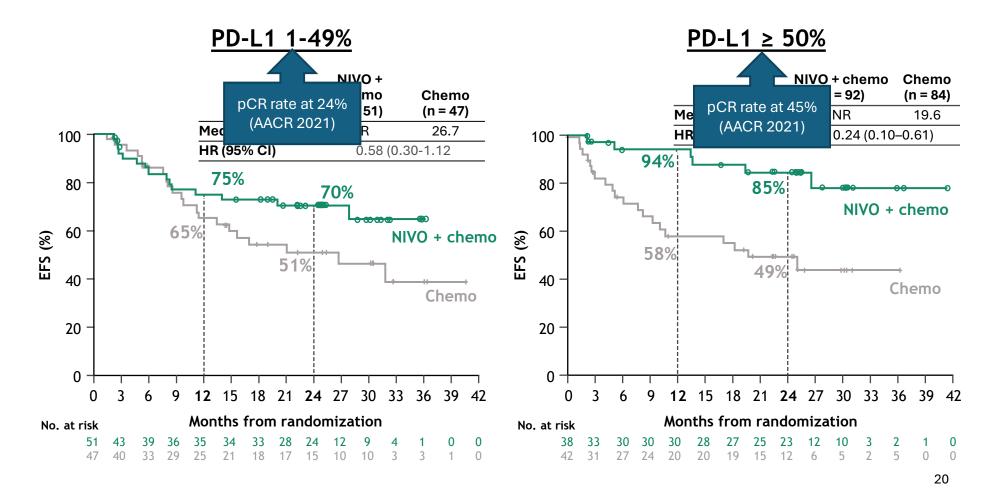
- Yes, it does but current data is a bit confusing
 - Minimal benefit in both PFS and OS if PDL1 <1%
 - Approved indication for PDL1>1% but most of the benefit is driven by the PDL1>50% subgroup.
 - Contradictory outcomes between IMpower 010 and KN091 on the PDL1>50% subgroup.

The evolving landscape


CheckMate 816 study

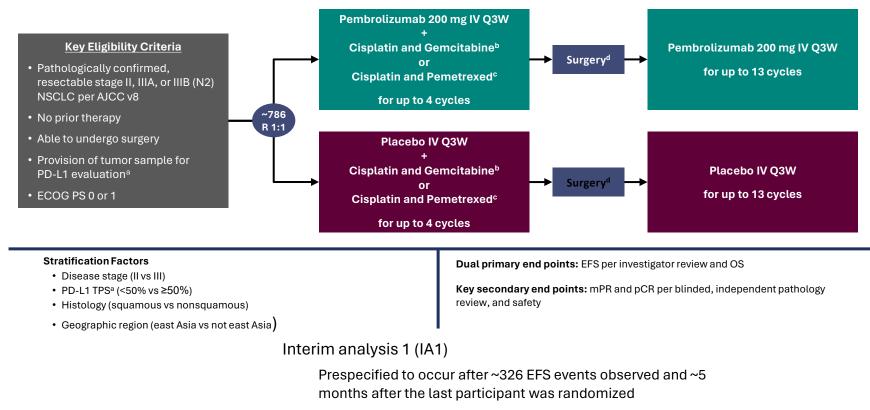
Primary endpoints	Secondary endpoints	Exploratory endpoints		
pCRby BIPR EFS by BICR	 MPR by BIPR OS Time to death or distant metastases 	 ORR by BICR Predictive biomarkers (PD-L1, TMB, ctDNA^h) 		

Forde et al NEJM 2022


EFS by PD-L1 expression < 1% or \ge 1%

Minimum follow-up: 21 months.

^a95% CI = 14.6–NR (NIVO + chemo) and 13.9–26.2 (chemo); ^b95% CI = NR–NR (NIVO + chemo) and 11.5–NR (chemo).


EFS by PD-L1 expression 1-49% or \geq 50%

Minimum follow-up: 21 months.

^a95% CI = 27.8-NR (NIVO + chemo) and 11.5-NR (chemo); ^b95% CI = NR-NR (NIVO + chemo) and 8.2-NR (chemo).

KEYNOTE-671 (Phase III): Neoadjuvant pembrolizumab + chemotherapy followed by resection and adjuvant pembrolizumab for early-stage NSCLC

Final analysis of mPR and pCR, interim analysis of EFS and OS

KN671: EFS as per PDL1 expression

PD-L1 TPS (50% cutoff)			1 	
<50%	107/265	142/266	- +	0.64 (0.49-0.82)
≥50%	32/132	63/134	_	0.42 (0.28-0.65)
PD-L1 TPS (1% cutoff)				
<1%	63/138	80/151		0.77 (0.55–1.07)
≥1%	76/259	125/249	- + -	0.47 (0.36–0.63)
PD-L1 TPS				
<1%	63/138	80/151		0.77 (0.55-1.07)
1–49%	44/127	62/115	i	0.51 (0.34-0.75)
≥50%	32/132	63/134		0.42 (0.28-0.65)

AEGEAN: EFS as per PDL1 expression

			Median EFS	6, mo (95%CI)		
Subgroup		n	D arm (N=366)	PBO arm (N=374)		HR (95% CI)
All patients		740	NR (31.9, NR)	25.9 (18.9, NR)	⊢⊕ –1	0.68 (0.53, 0.88)
Age at randomization	<65 years	358	NR (NR, NR)	NR (18.9, NR)		0.71 (0.47, 1.04)
•	≥65 years	382	NR (17.9, NR)	24.5 (13.6, 31.1)		0.69 (0.48, 0.97)
Sex	Male	530	NR (31.9, NR)	22.9 (14.3, 31.1)		0.61 (0.44, 0.82)
	Female	210	NR (17.5, NR)	NR (13.6, NR)		0.95 (0.58, 1.56)
ECOG PS	0	506	NR (31.9, NR)	25.4 (14.3, NR)		0.65 (0.47, 0.89)
	1	234	NR (21.8, NR)	25.9 (14.3, NR)		0.78 (0.49, 1.22)
Race*	Asian	307	NR (NR, NR)	25.4 (13.9, NR)		0.60 (0.40, 0.90)
	Non-Asian	433	31.9 (21.8, NR)	26.2 (14.3, NR)		0.76 (0.54, 1.06)
Smoking	Current	190	NR (NR, NR)	14.3 (8.1, NR)		0.48 (0.28, 0.80)
J	Former	443	NR (31.9, NR)	25.9 (19.5, NR)	· · · · · · · · · · · · · · · · · · ·	0.79 (0.57, 1.10)
	Never	107	NR (NR, NR)	24.5 (14.3, NR)	⊢	0.76 (0.35, 1.58)
Histology	Squamous	360	NR (31.9, NR)	26.2 (13.0, NR)	· • • • •	0.71 (0.49, 1.03)
	Nonsquamous	375	NR (NR, NR)	25.4 (14.3, NR)	i i i i i i i i i i i i i i i i i i i	0.69 (0.48, 0.99)
Disease stage		214	NR (NR, NR)	31.1 (25.4, NR)		0.76 (0.43, 1.34)
(AJCC 8 th ed)	IIIA	338	NR (NR, NR)	19.5 (11.7, NR)		0.57 (0.39, 0.83)
(,	IIIB	186	31.9 (11.7, NR)	18.9 (11.8, NR)		0.83 (0.52, 1.32)
PD-L1 expression at	TC <1%	247	NR (14.9, NR)	20.6 (13.9, NR)		0.76 (0.49, 1.17)
baseline [†]	TC 1-49%	277	NR (31.9, NR)	25.4 (12.2, NR)		0.70 (0.46, 1.05)
	TC ≥50%	216	NR (NR, NR)	26.2 (14.3, NR)		0.60 (0.35, 1.01)
Planned neoadjuvant	Cisplatin	196	NR (NR, NR)	31.1 (14.3, NR)	i	0.59 (0.35, 1.00)
platinum agent	Carboplatin	544	NR (31.9, NR)	25.4 (14.3, NR)	·	0.73 (0.54, 0.98)
					0.25 0.5 1 2 3	4
					HR	
					Favors durvalumab Favors placebo —	•

*Race was self-reported per the electronic case report form; †determined using the Ventana SP263 IHC assay

NeoTORCH: EFS as per PDL1 expression

INV-EFS Treatment Effects in Key Subgroups

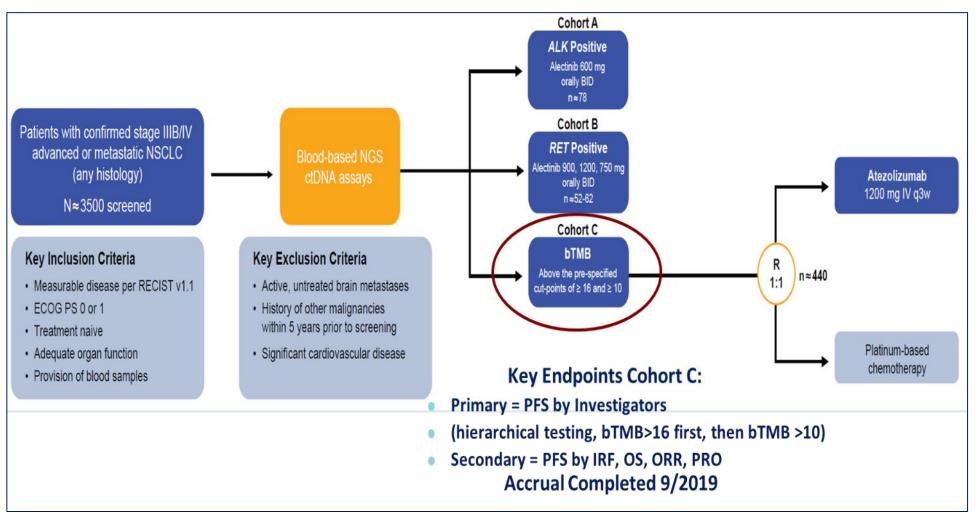
Subgroups					Toripalimab + Chemo Events/Total	Placebo + Chemo Events/Total	Hazard Ratio (95% CI)
Disease Stage							
IIIA	j	••••			34/136	65/136	0.44 (0.287, 0.661)
IIIB		•			13/65	31/64	0.30 (0.149, 0.559)
PD-L1 Expression							
TC>=1%		•			28/133	65/132	0.31 (0.197, 0.481)
TC<1% or Not Evaluable					19/69	32/70	0.59 (0.327, 1.034)
Pathological Type							
Non-squamous Cell Carcinoma		•			12/45	21/45	0.54 (0.257, 1.079)
Squamous Cell Carcinoma	-				35/157	76/157	0.35 (0.234, 0.523)
Age							
<65	•	 _			33/140	66/138	0.41 (0.267, 0.618)
>=65		• •			14/62	31/64	0.34 (0.177, 0.635)
Sex							
Male	-	 -			42/181	91/189	0.38 (0.259, 0.541)
Female		•			- 5/21	6/13	0.54 (0.154, 1.796)
ECOG							
0	-	•	• !		20/70	38/73	0.44 (0.249, 0.743)
1	-	• • •			27/132	59/129	0.36 (0.226, 0.566)
Smoking							
Yes (Including Smoker or Former)	E.	 -			39/174	88/181	0.37 (0.252, 0.539)
No		•			8/28	9/21	0.52 (0.193, 1.358)
	0.000 Toripalimab Better	• 0.500	1.000	1.500	2.000 Placebo Better		

Shun Lu. Perloperative toripalimab + platinum-doublet chemotherapy vs chemotherapy in resectable stage IVIII non-small PRESENTED BY: cell lung cancer : Interim event-free survival analysis of the phase III Neotorch study

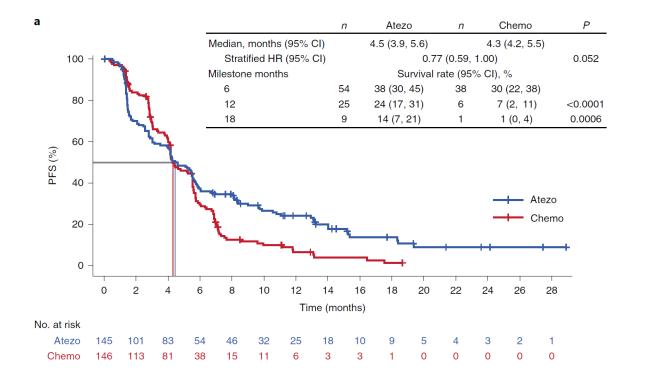
Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse

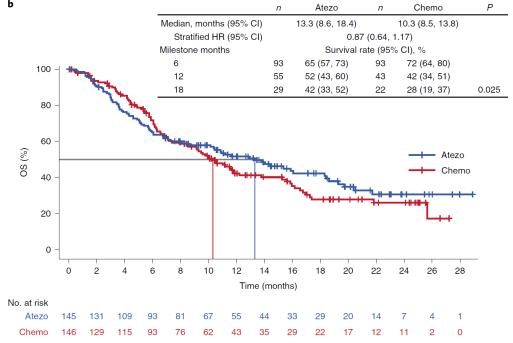
ASCO[®] Plenary Series

#ASCOPlenarySeries

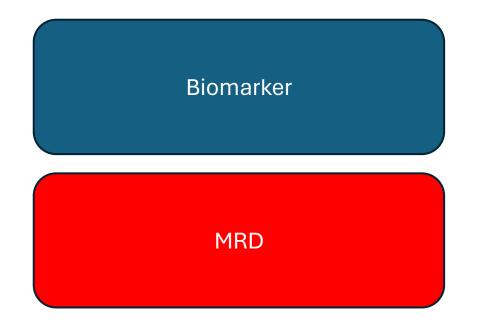

Does PDL1 status matter for neo-adjuvant chemo-IO?

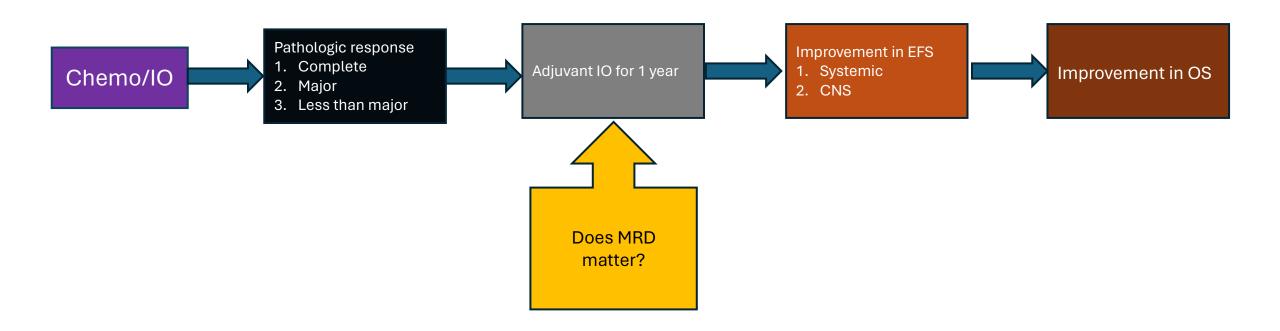
- Yes, it does
- Multiple studies have shown lesser benefit for patients with PDL1 <1%
- It appears that both PDL1 1-49% and >50% subgroup may benefit from neo-adjuvant chemo-IO


Can TMB help?


BFAST (Blood First Assay Screening Trial)

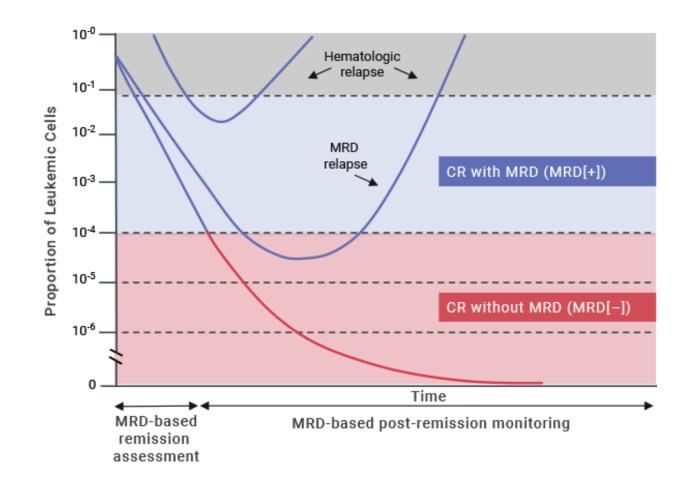
Phase II/III Trial in Advanced Treatment-naïve Advanced NSCLC


Plasma-DNA based TMB is not a predictive biomarker for advanced stage NSCLC



Peters & Mok et al Nature Medicine 2022

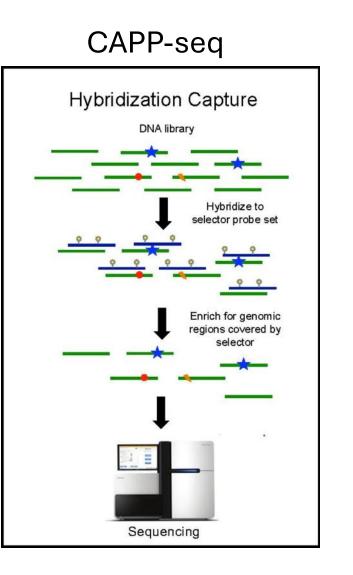
Does it matter?


Lack of biomarker for subsequent adjuvant IO

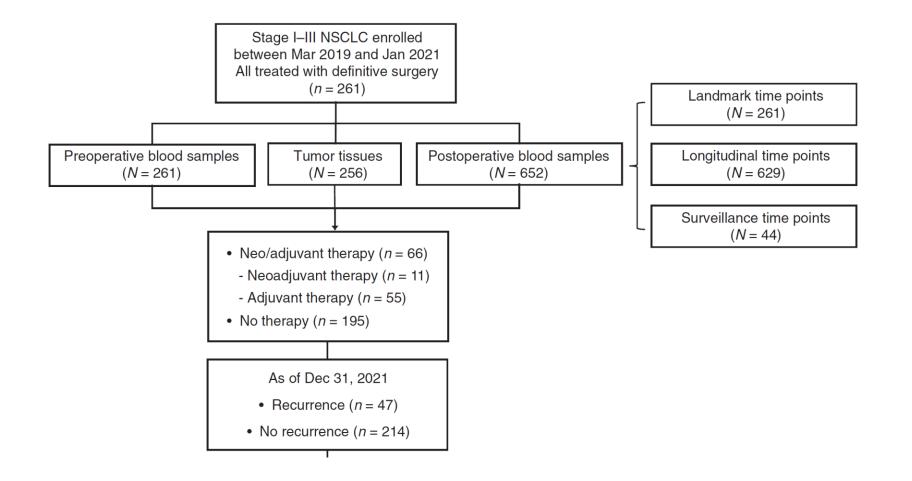
Minimal residual disease (MRD) is a small number of cancer cells left in the body after treatment. These cells have the potential to come back and cause relapse in our patients.

Ghayas Issa, MD Anderson

MRD was first coined by hematologists referring to residual leukemic cell

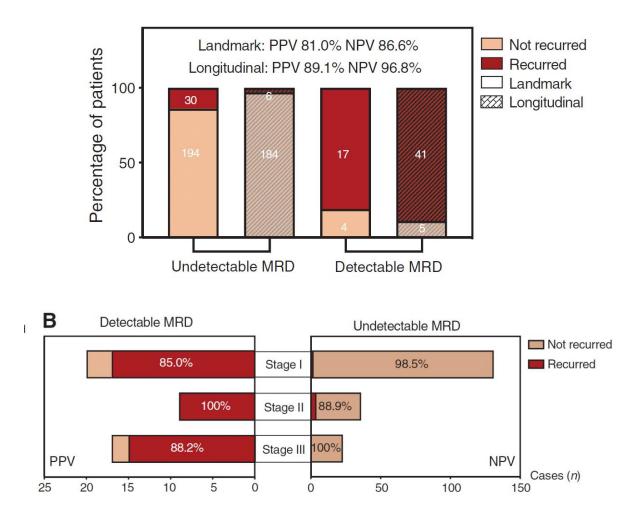

Berry DA, et al. JAMA Oncol. 2017;3:e170580

MRD for lung cancer refers to detection of ctDNA that is associated with residual cancer cell after curative surgery

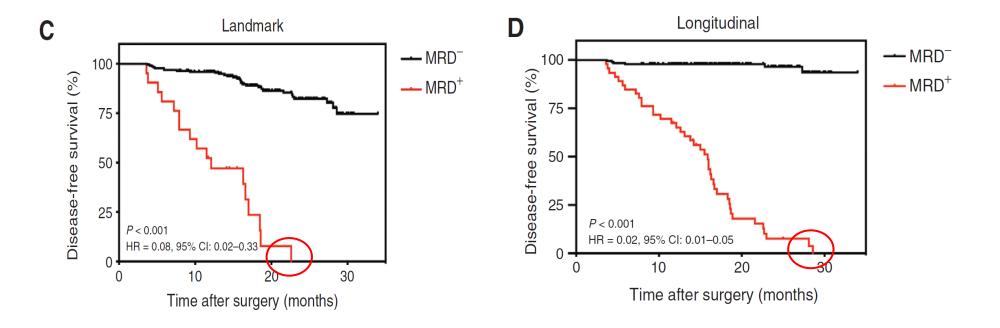

MRD is NOT a single entity

Primary NSCLC resection Exome sequencing Phylogenetic tree informs and multiregion sampling of tumour regions PCR assay panel construction R1 R2 R3 R4 3 assay panel Clonal Mutatior Multiple patient-specific assay panels combined Multiplex-PCR assay pool Blood sample Patient-specific phylogenetic tracking Patient 5 & C 3 PCR NGS 10 20 30 cfDNA 0 Pre-surgery Relapse Multiplex-compatible primers extracted targeting patient-specific SNVs **cSMART** PCR of barcoded molecules Individual DNA molecules in plasma Inverse PCR of Counting of unique circularised DNA barcoded reads molecules Paired-end sequencing 4/~ 4/10

Signatera



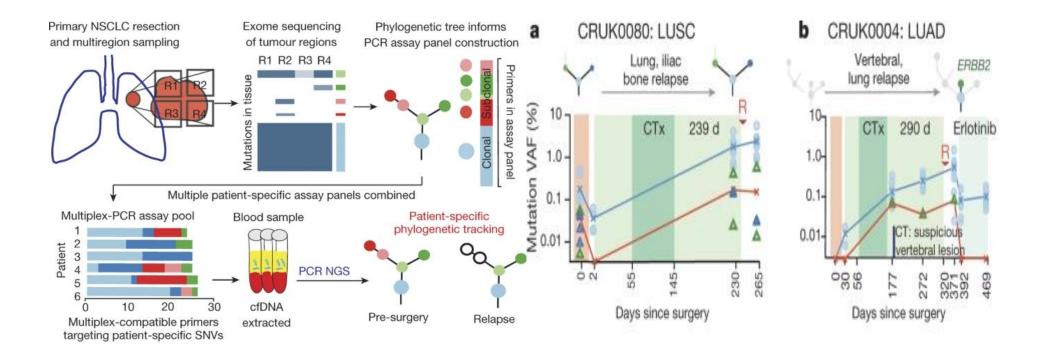
Retrospective cohort from China


Zhang et al Cancer Discovery 2022

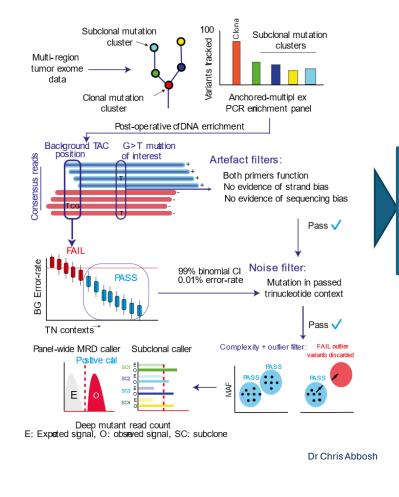
Both landmark and longitudinal MRD is predictive of recurrence

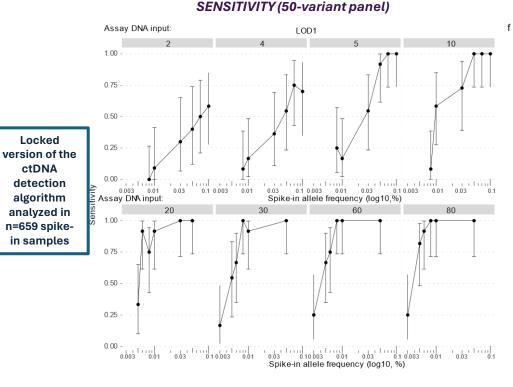
Zhang et al Cancer Discovery 2022

Both landmark and longitudinal MRD is predictive of recurrence



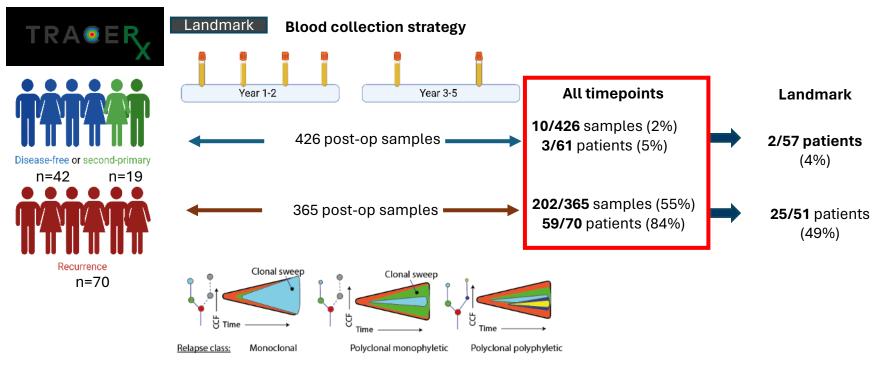
Zhang et al Cancer Discovery 2022


TRACERx


2017: Tumor-informed personalized ctDNA detection identified disease relapse before routine clinical surveillance and detected subclones present at relapse:

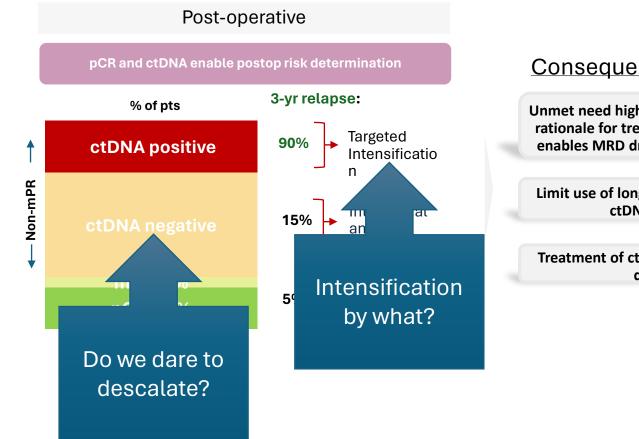
~100 postoperative plasma samples analysed from 24 patients

2023: Development of an Anchored-Multiplex PCR approach targeting up to 200 mutations; Sensitive and specific detection of ctDNA at AFs of 80ppm



SPECIFICITY

- 100% (95% CI: 93 to 100%, n=48 negative controls, 50-var panel)
- 99.3% in simulation (n=3157 simulated negatives with 200-var panel)


2023: High incidence of MRD positive in the recurrent population from 791 Postoperative plasma samples (from 131 patients)

Phylogenetic relapse class determination n=44 patients

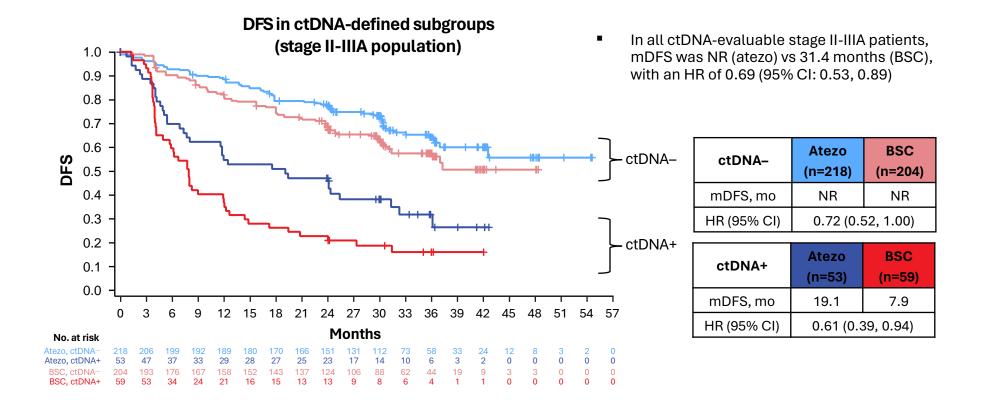
Abbosh et al., Nature 2023

Suggested by authors: will be risk-stratified based on a combination of ctDNA status and pCR status:

<u>Consequences:</u>

Unmet need highest in ctDNA+ patients; rationale for treatment intensification, enables MRD driven adjuvant studies.

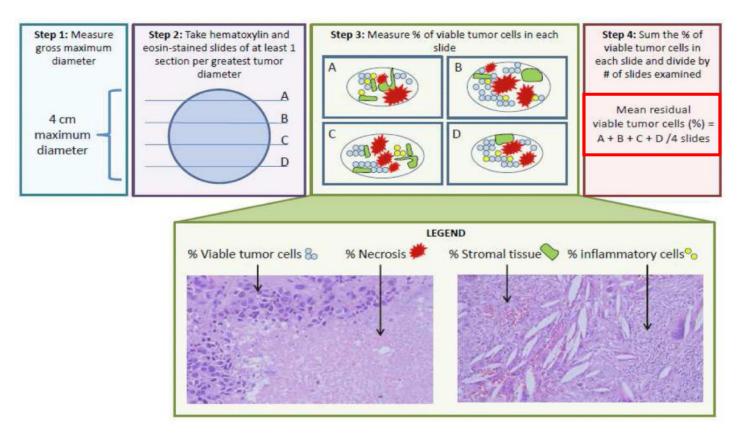
Limit use of long adjuvant regimens in ctDNA negative.


Treatment of ctDNA negative patients declines.

ctDNA from IMpower 010

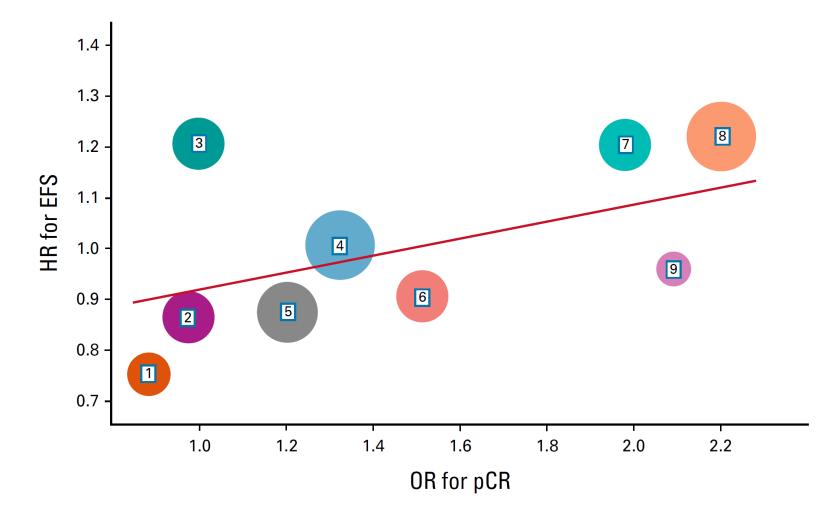
- 600 patients in the ITT population (60%) were ctDNA evaluable, 534 of whom had stage II-IIIA NSCLC
- Treatment arms were balanced in the ctDNA-evaluable population (ctDNA+ and ctDNA– patients) and comparable to the ITT population (data not shown)

Characteristic		ctDNA+ patients, % (n/N)	
Disease stage	II-IIIA	21% (112/534)	
	IB-IIIA	20% (118/600)	
	IB	9% (6/66)	
	II	14% (37/273)	
	IIIA	29% (75/261)	
Nodal status	NO	7% (14/193)	
	N1	20% (43/218)	
	N2	32% (61/189)	
Smoking history	Never	20% (25/123)	
	Current/previous	19% (93/477)	
Sex	Male	21% (86/412)	
	Female	17% (32/188)	
ECOG PS	0	19% (69/356)	
	1	20% (48/243)	
EGFR mutation	Detected	30% (23/76)	
	Not detected	16% (54/337)	
	Unknown	22% (41/187)	
Region	Asia-Pacific	17% (24/143)	
	Europe and Middle East	22% (85/382)	
	North America	12% (9/73)	


ctDNA positivity was strongly prognostic

Factors that may contribute to the decision for adjuvant therapy?

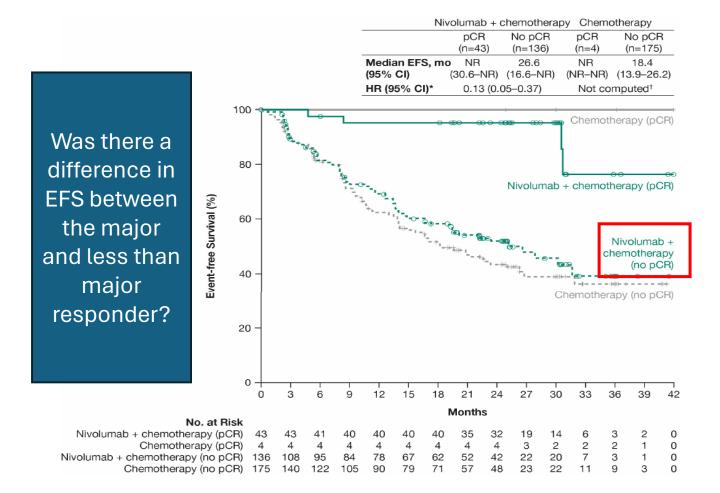
- Pathologic response
 - CPR
 - MPR
 - Less than MPR
- MRD
 - Presence
 - Absence


MPR and CPR

"Major pathologic response" (MPR), defined as =10% residual tumor following neoadjuvant therapy, should be adopted as an outcome measurement in NSCLCs.

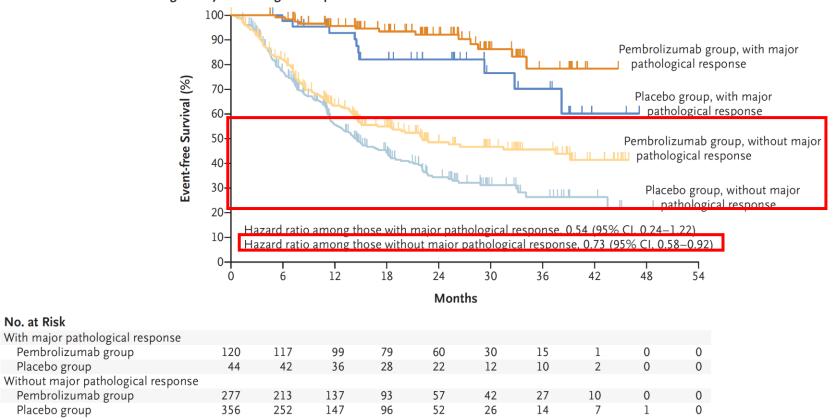

Hellman et al Lancet Oncol 2014

Correlation between pCR and EFS


Chaft et al JCO 2022

Depth of pathologic response: CM816

Forde et al NEJM 2022 Supplementary data

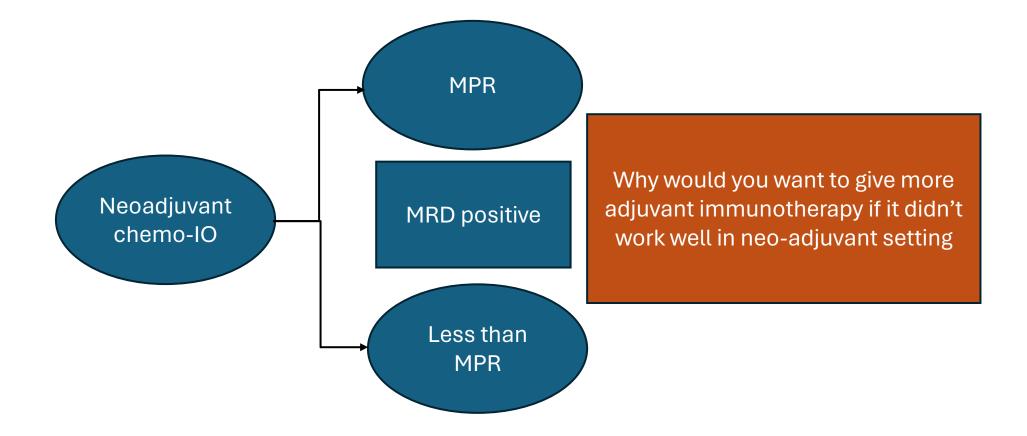

EFS of patients with no CPR from CM816 (Major + Less Than Major pathologic response)

Forde et al NEJM 2022

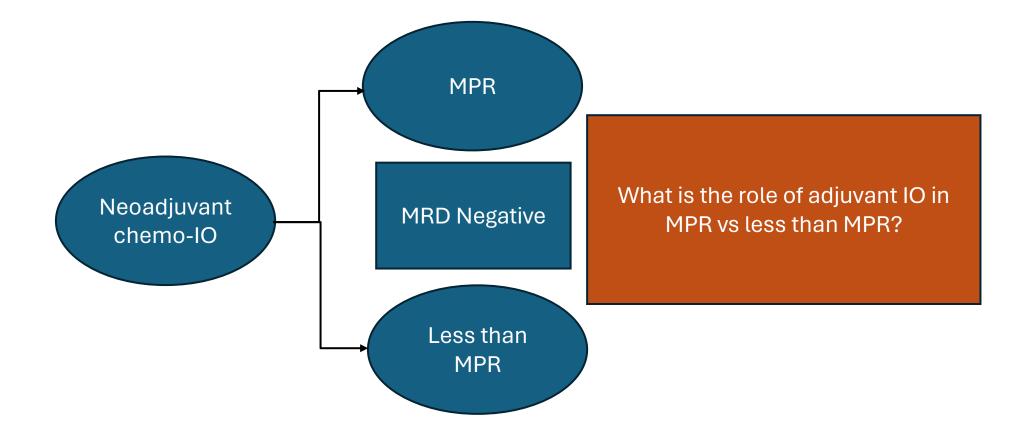
Insights from KN671

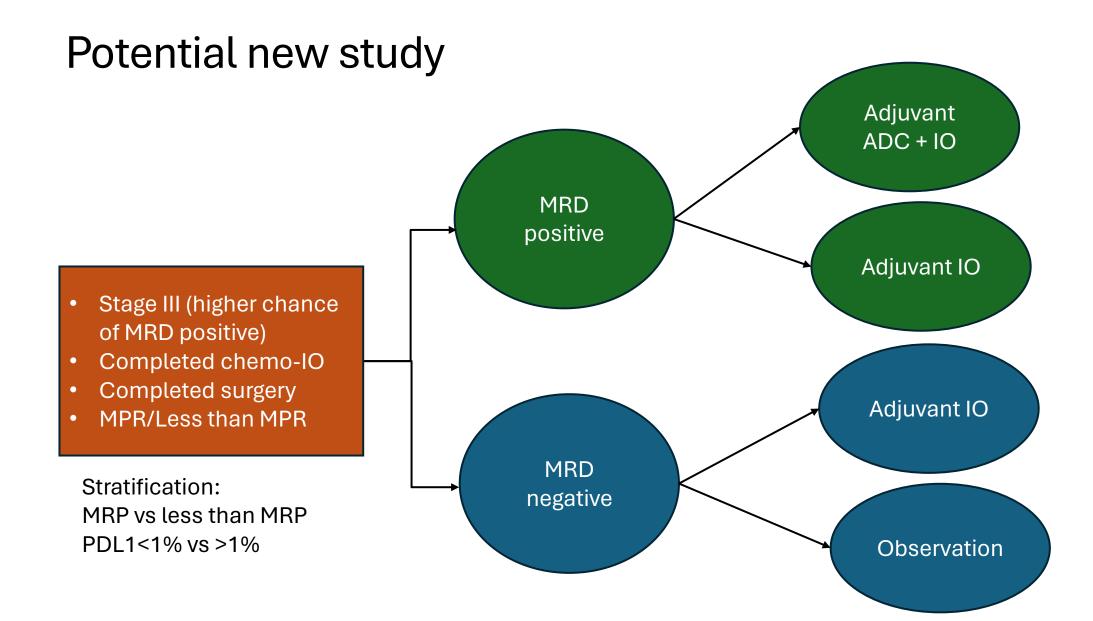
A Event-free Survival According to Major Pathological Response

Wakelee et al NEJM 2023

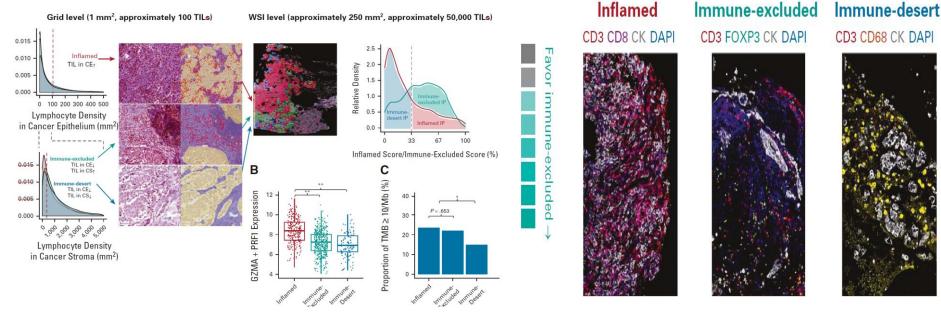

Factors that may contribute to the decision for adjuvant therapy?

- Pathologic response
 - CPR: With excellent survival outcome from CM816, these patient may not need further adjuvant IO
 - MPR: Unclear if adjuvant IO provide additional benefit
 - Less than MPR: KN671 suggested improvement of survival with neoadjuvant IO followed by IO
- MRD
 - Presence
 - Absence


Can we use MRD to personalize adjuvant IO for patients with major or less than major pathologic response?



More adjuvant IO for MRD positive??



More adjuvant IO for MRD positive??

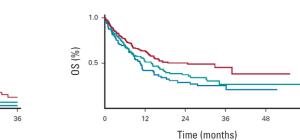
Potential new biomarker: AI-assisted analysis of tumor infiltrate lymphocyte

В

ICI Monotherapy						
PFS	No.	ORR (%)	mPFS (95% CI)	HR (95% CI) Inflamed v	P Value Inflamed	
Inflamed	228	26.8	4.1 (2.8 to 6.2)	NA	NA	
Immune-excluded	192	11.5	2.2 (2.0 to 2.8)	1.52 (1.23 to 1.88)	9.6 x 10 ⁻⁸	
Immune-desert	98	11.2	2.4 (1.7 to 4.2)	1.58 (1.23 to 2.03)	4.1 x 10 ⁻⁴	

.

12


18

Time (months)

24

60

Park (Mok) et al JCO 2022

1.0

PFS (%)

No at rick:

Summary

- Biomarker
 - Adjuvant IO: PDL1>50% benefit the most, and no benefit with PDL1<1%. Debatable for PDL11-49%
 - Neoadjuvant chemo-IO: Lesser benefit with PDL1<1%
 - TMB is unlikely to be helpful but pending on further analysis.
- MRD
 - Diverse technology and shouldn't be view as a single entity
 - MRD positive is a strong poor prognostic factor
 - Key factors that may impact on selection of patient for adjuvant IO
 - Pathologic response :CPR, MPR, Less than MPR
 - MRD: Positive vs negative
 - Excellent survival outcome in CPR group from CM816 (no adjuvant therapy)
 - Need future study to define the role of MRD in patients with MPR/less than MPR

What really matter: Afternoon tea

Faculty for ESMO course on EGFR mutation, Jan 2024

Nearest location at Nathan Road