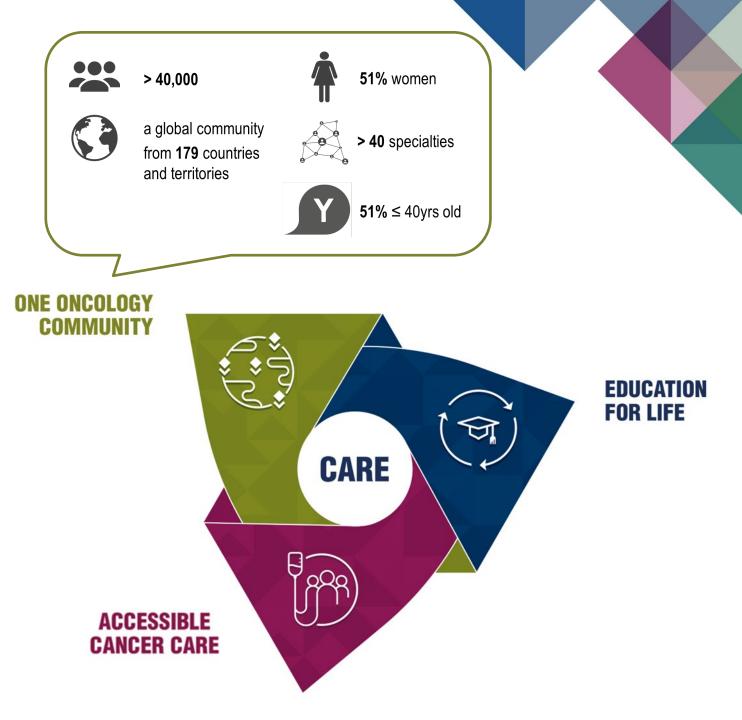
DEFINING STANDARDS IN CANCER CARE ESMO Tools and Frameworks

Prof. George Pentheroudakis MD MSc PhD

Chief Medical Officer - European Society for Medical Oncology (ESMO)

ESMO MISSION & VISION

Improve quality of prevention, diagnosis, treatment and care

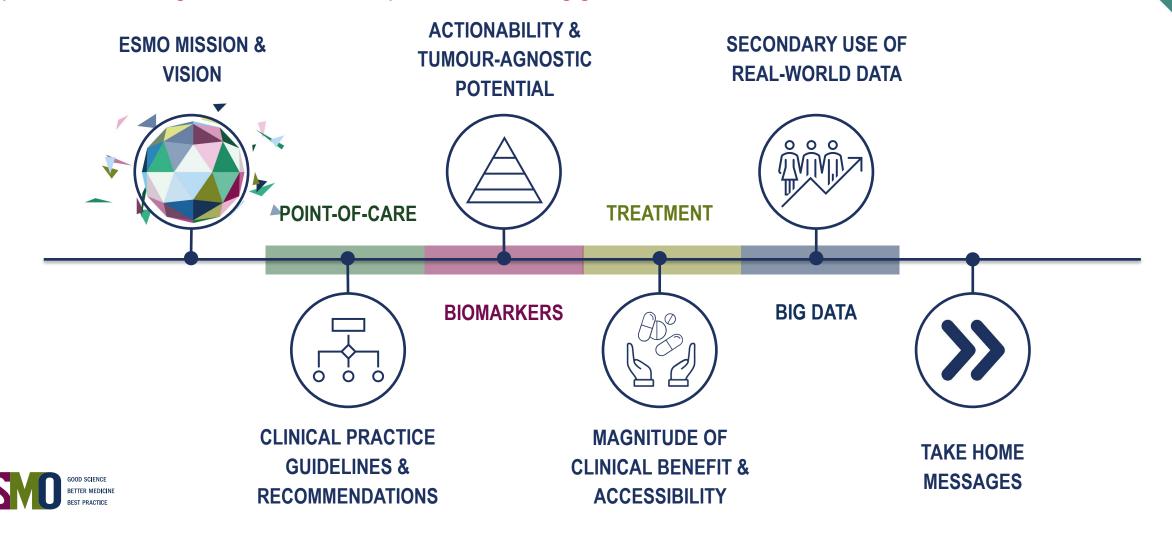

Advance the art and practice of oncology

Disseminate knowledge to cancer patients and the public

Educate and train oncology professionals

Ensure a high standard of qualification

Promote equal access to optimal cancer care

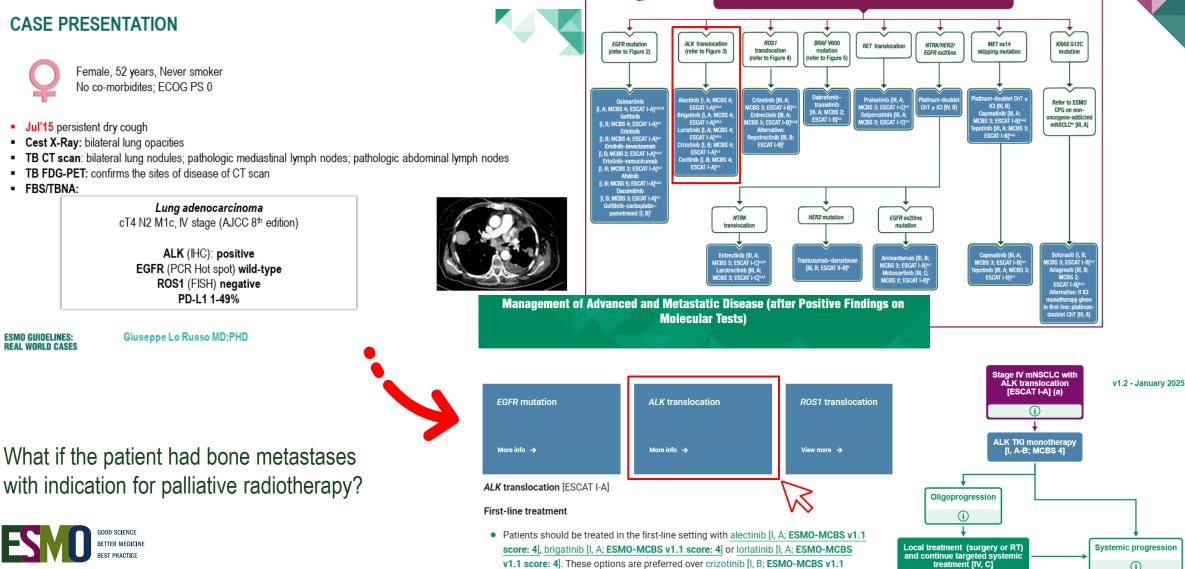


DEFINING STANDARDS, ENABLING OPTIMAL PRACTICE OF ONCOLOGY

ESMO Frameworks and Tools

https://www.esmo.org/scales-and-tools, https://www.esmo.org/guidelines

CLINICAL PRACTICE GUIDELINES

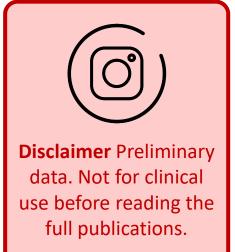

The ESMO Clinical Practice Guidelines, developed by leading experts and based on evidence-based medicine, provide a set of recommendations on state of the art care to help HCPs and patients.

B. J. Solomon¹², G. Veronesi^{13,14} & M. Reck¹⁵, on behalf of the ESMO Guidelines Committee

ESMO CPG @ POINT-OF-CARE

CASE PRESENTATION

v1.1 score: 4]. These options are preferred over crizotinib [I, B; ESMO-MCBS v1.1


score: 4] or ceritinib [I, B; ESMO-MCBS v1.1 score: 4].

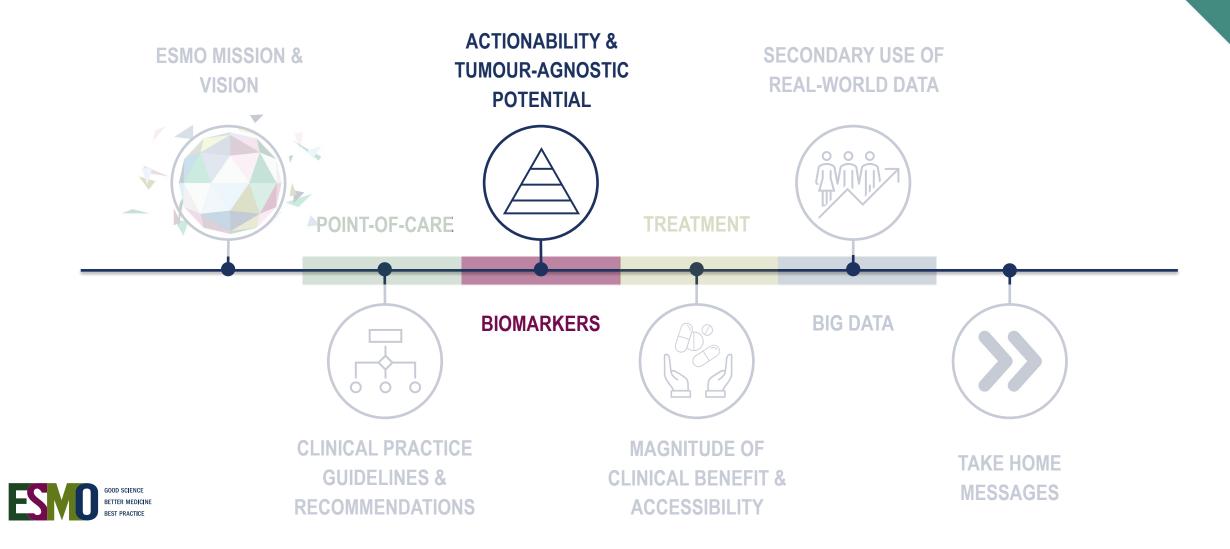
Stage IV mNSCLC, molecular tests positive (EGFR/ALK/ROS1/BRAF/RET/NTRK/MET/HER2/EGFRex20ins/KRAS G12C)

(i)

ESMO-ESTRO CONSENSUS STATEMENTS ON

SAFETY OF COMBINING TARGETED THERAPIES WITH RADIOTHERAPY

Table 1. Delphi consensus recommendations for various drug class-radiotherapy combinations. The traffic light colors represent the recommended safety measure for each scenario.


rradiated area	Type of rac	liotherapy	CDK4/6	HER2	PARP	mTOR	EGFR	ALK	BRAF/ MEK	PD-(L)1	CTLA-4	VEGF	Mult targe
	Low-dose	palliative											
Skin	High-dose	conventionally fractionated											
	High-dose	High-dose stereotactic											
	Low-dose palliative												
Brain	High-dose conventionally fractionated												
	High-dose stereotactic												
	Low-dose	Low-dose palliative											
lead & neck	High-dose conventionally fractionated												
	High-dose												
	Low-dose	palliative											
Thorax	High-dose conventionally fractionated												
	High-dose stereotactic												
	Low-dose palliative												
Abdomen/pelvis	High-dose conventionally fractionated												
	High-dose stereotactic												
	Low-dose palliative												
Musculoskeletal tissues	High-dose conventionally fractionated												
	High-dose stereotactic												
LEGEND													
Minor/no adaptation		Major adaptation		Not combining					No agreement				
Clinically insignificant drug		Clinically relevant drug interru	ption/	Protracted drug interruption or no				Agreement rate below 75%.					
interruption/dosage reduction,		dosage reduction or a major				o avoid a							
a minor radiotherapy adaptation,		radiotherapy adaptation.		radioth	erapy in	teractio	n.						
or no adaptations.													

Preliminary results. Not for clinical use before reading the full publications.

DEFINING STANDARDS

ESMO Frameworks and Tools

ESCAT: ESMO Scale of Clinical Actionability for molecular Targets

	ESCAT evidence tier		Required level of evidence	Clinical implication	
	I.	I-A	Prospective, randomised clinical trials show the alteration-drug match in a specific tumour type results in a clinically meaningful improvement of a survival end point		
Ready for routine use	Alteration-drug match is associated with improved outcome in clinical trials	I-B	Prospective, non-randomised clinical trials show that the alteration-drug match in a specific tumour type, results in clinically meaningful benefit as defined by ESMO MCBS 1.1	Access to the treatment should be considered standard of care	
		I-C	Clinical trials across tumour types or basket clinical trials show clinical benefit associated with the alteration-drug match, with similar benefit observed across tumour types		
Investigational	II Alteration-drug match is associated with antitumour	II-A	Retrospective studies show patients with the specific alteration in a specific tumour type experience clinically meaningful benefit with matched drug compared with alteration-negative patients	Treatment to be considered "preferable" in the context of evidence collection either as a	A framework to
	associated with antitumour activity, but magnitude of benefit is unknown	II-B	Prospective clinical trial(s) show the alteration-drug match in a specific tumour type results in increased responsiveness when treated with a matched drug, however, no data currently available on survival end points	prospective clinical trial	genomic alterat as targets
	III Alteration-drug match suspected to improve outcome based on clinical trial data in other tumour type(s) or with similar molecular alteration IV Pre-clinical evidence of	III-A	Clinical benefit demonstrated in patients with the specific alteration (as tiers I and II above) but in a different tumour type. Limited/absence of clinical evidence available for the patient-specific cancer type or broadly across cancer types	Clinical trials to be discussed with	precision onco
Hypothetical target		III-B	An alteration that has a similar predicted functional impact as an already studied tier I abnormality in the same gene or pathway, but does not have associated supportive clinical data	patients	
		IV-A	Evidence that the alteration or a functionally similar alteration influences drug sensitivity in preclinical <i>in vitro</i> or <i>in vivo</i> models	Treatment should "only be considered" in the context of early	Ready for routine use
	actionability	IV-B	Actionability predicted in silico	clinical trials. Lack of clinical data should be stressed to patients	Investigational evidence tier II
Combination development	V Alteration-drug match is associated with objective response, but without clinically meaningful benefit		Prospective studies show that targeted therapy is associated with objective responses, but this does not lead to improved outcome	Clinical trials assessing drug combination strategies could be considered	Hypothetical target evidence tier III evidence tier V Combination development ESCAT evidence tier V Lack of evidence ESCAT evidence tier X
Lack of Evidence	X Lack of evidence for actionability		No evidence that the genomic alteration is therapeutically actionable	The finding should not be taken into account for clinical decision	

ER MEDICIN

To enquire or ask questions about the ESMO Scale for Clinical Actionability of molecular Targets, please send an email to education@esmo.org

Mateo J, et al. Annals of Oncology 2018;29(9):1895-1902.

NEXT-GENERATION SEQUENCING IN ADVANCED CANCER

ESMO recommendations updated in 2024

Gene	Alteration	Estimated prevalence	ESCAT score	Drug class matched	References
EGFR	Common mutations (deletion exon 19, p.L858R)	15% Caucasian 50% Asian 30% LATAM	IA	First-, second- and third-generation EGFR TKIs EGFR-MET bispecific antibodies + third-generation EGFR TKIs EGFR-MET bispecific antibodies + chemotherapy \pm EGFR TKIs (after PD on third-generation EGFR TKIs)	Midha et al., Am J Can Res 2015 ¹² Arrieta et al., J Thorac Oncol 2015 ¹³ Soria et al., N Engl J Med 2018 ¹⁴ Ramalingam et al., N Engl J Med 2023 ¹⁶ Cho et al., Ann Oncol 2023 ¹⁶ Passaro et al., Ann Oncol 2024 ¹⁷
	Acquired p.T790M mutation in exon 20	60% after first- or second-generation EGFR TKIs	IA	Third-generation EGFR TKIs	Mok et al., <i>N Engl J Med</i> 2017 ¹⁸ Papadimitrakopoulou et al., <i>Ann Onc</i> 2020 ¹⁹
	Exon 20 insertions	2%	IA	EGFR-MET bispecific antibodies or TKIs	Park et al., J Clin Oncol 2021 ²⁰ Zhou et al., N Engl J Med 2023 ²¹
	Uncommon mutations (p.G719 variants in exon 18, p.L861Q in exon 21, p.S768I in exon 20)	10%	IB	Second- and third-generation EGFR TKIs	Cho et al., J Clin Oncol 2020 ²² Yang et al., Front Oncol 2022 ²³
ALK	Fusions	5%	IA	ALK TKIs	Mok et al., Ann Oncol 2020 ²⁴
	FSCAT	Tier IA.	ΔΙΚ	fusion - alectinib	Camidge et al., J Thorac Oncol 2021 Horn et al., JAMA Oncol 2021 ²⁷
					Solomon et al., <i>Lancet Respir Med</i> 2023 ²⁸
KRAS	Mutations (p. G12C)	12%	IA	KRAS ^{GIZC} TKIS	2023 ²⁸ Jänne et al., <i>N Engl J Med</i> 2022 ²⁹ de Langen et al., <i>Lancet</i>
					2023 ²⁸ Jänne et al., N Engl J Med 2022 ²⁹
RET	Mutations (p. G12C)	12%	IA	KRAS GIZC TKIS	2023 ²⁸ Jänne et al., <i>N Engl J Med</i> 2022 ²⁹ de Langen et al., <i>Lancet</i> 10, 2021 ²⁹ Subbiah et al., <i>Clin Can I</i> 10, 13 ¹¹ Griesinger et al., <i>Ann On</i> 2023 ¹³ Zhou et al., <i>J Clin Oncol</i> 2023 ¹³ Zhou et al., <i>N Engl J Med</i> 2023 ¹⁴ Shaw et al., <i>Ann Oncol</i> 2019 ¹⁵ Shaw et al., <i>Lancet Oncol</i> 2019 ³⁶
RET ROS1	Mutations (p. G12C) Fusions	12% 1%-2%	IA IA	KRAS ^{GLZC} TKIS RET TKIS	2023 ²⁸ Jänne et al., <i>N Engl J Med</i> 2022 ²⁹ de Langen et al., <i>Lancet</i> 1 Subbiah et al., <i>Clin Can I</i> Griesinger et al., <i>Ann On</i> 2023 Drilon et al., <i>J Clin Oncol</i> 2023 ³³ Zhou et al., <i>N Engl J Med</i> 2023 ³⁴ Shaw et al., <i>Ann Oncol</i> 2019 ³⁵
RET ROS1 BRAF	Mutations (p. G12C) Fusions Fusions	12% 1%-2% 1%-2%	IA IA IB	KRAS ^{GIJC} TKIs RET TKIs ROS1 TKIs	2023 ²⁸ Jänne et al., N Engl J Med 2022 ⁻⁹ de Langen et al., Lancet and
RET ROS1 BRAF	Mutations (p. G12C) Fusions Fusions Mutations (p. V600E) Mutations exon 14	12% 1%-2% 1%-2% 2%	IA IA IB IB	KRAS ^{GIDC} TKIS RET TKIS ROS1 TKIS BRAF TKIS + MEK TKIS	2023 ²⁸ Jänne et al., <i>N Engl J Med</i> 2022 ²⁹ de Langen et al., <i>Lancet</i> 10, 10, 13, Griesinger et al., <i>Ann On</i> , 2023 Drilon et al., <i>J Clin Oncol</i> 2023 ³³ Zhou et al., <i>N Engl J Med</i> 2023 ³⁴ Shaw et al., <i>Ann Oncol</i> 2019 ³⁶ Drilon et al., <i>ITO Clin Res Rep</i> 2022 ³⁰ Planchard et al., <i>J Thorac Oncol</i> 202, Riely et al., <i>J Clin Oncol</i> 2023 ³⁰ Drilon et al., <i>Nat Med</i> 2020 ³⁰ Drilon et al., <i>J Clin Oncol</i> 2021 ⁴¹ Lu et al., <i>Lancet Respir</i> 2021 ⁴² Thomas et al., <i>J Thorac Oncol</i> 2022 ⁴⁴ Wolf et al., <i>Ann Oncol</i> 2022 ⁴⁴ Wolf et al., <i>Ann Oncol</i> 2021 ⁴⁵
KRAS RET ROS1 BRAF MET	Mutations (p. G12C) Fusions Fusions Mutations (p. V600E) Mutations exon 14 skipping	12% 1%-2% 1%-2% 2% 3% 5% as primary 15% as mechanism of acquired resistance	IA IA IB IB	KRAS ^{GLAC} TKIS RET TKIS ROS1 TKIS BRAF TKIS + MEK TKIS MET TKIS MET TKIS + third-generation EGFR TKIS EGFR-MET bispecific antibodies + third-generation	2023 ²⁸ Jänne et al., N Engl J Med 2022 ⁻⁵ de Langen et al., Lancet in 2021 ⁻⁵ de Langen et al., Lancet in 2021 ³¹ Griesinger et al., Ann On 2023 ³³ Drilon et al., J Clin Oncol 2023 ³³ Shaw et al., Ann Oncol 2019 ³⁵ Shaw et al., Ann Oncol 2019 ³⁵ Drilon et al., JTO Clin Res Rep 2022 ³⁵ Planchard et al., J Thorac Oncol 202 Riely et al., J Clin Oncol 2023 ³⁹ Drilon et al., J Clin Oncol 2021 ⁴⁵ Lu et al., Lancet Respir 2021 ⁴² Thomas et al., J Thorac Oncol 2022 ⁴⁶ Wolf et al., J Clin Oncol 2022 ⁴⁶ Bauml et al., J Clin Oncol 2021 ⁴⁶ Bauml et al., J Clin Oncol 2022 ⁴⁷ Shu et al., J Clin Oncol 2022 ⁴⁶ Shu et al., J Clin Oncol 2022 ⁴⁷ Marmarelis et al., J Thorac Oncol 202

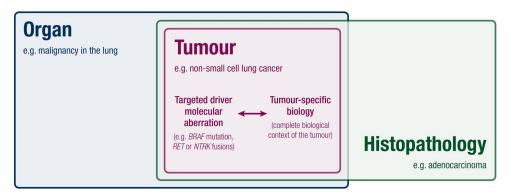
SPECIAL ARTICLE

Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group

M. F. Mosele^{1,2}, C. B. Westphalen³, A. Stenzinger⁴, F. Barlesi^{1,2,5}, A. Bayle^{5,6,7,8}, I. Bièche⁹, J. Bonastre^{7,8}, E. Castro¹⁰, R. Dienstmann^{11,12,13}, A. Krämer^{14,15}, A. Czarnecka^{16,17}, F. Meric-Bernstam¹⁸, S. Michiels^{7,8}, R. Miller^{19,20}, N. Normanno²¹, J. Reis-Filho^{22†}, J. Remon², M. Robson²³, E. Rouleau²⁴, A. Scarpa²⁵, C. Serrano¹¹, J. Mateo¹¹ & F. André^{1,2,5*}

- ✓ Tumour-agnostic
 ✓ Non-squamous NSCLC
 - ✓ Breast cancer
 - ✓ Colorectal cancer
 - ✓ Prostate cancer
 - ✓ Gastric cancer
 - ✓ Pancreatic cancer
 - Ovarian cancer

- ✓ Hepatocellular carcinoma
- Rare tumours:
 Cholangiocarcinoma, *GIST*,
 Soft tissue sarcomas,
 Thyroid cancer, CUP


NEXT-GENERATION SEQUENCING IN ADVANCED CANCER

ESMO recommendations updated in 2024

C	D. (
Gene/Signature ^a	Alteration	Estimated prevalence (illustration of tumours with high prevalence of the alteration)	ESCAT score	Drug class matched	References
NTRK1/2/3	Fusions	80%-90% secretory breast cancer 15%-20% Spitzoid melanoma	IC	TRK inhibitors	Hong et al., <i>Lancet Oncol</i> 2020 ² Demetri et al., <i>Clin Can Res</i> 2022 ³
MSI-H/dMMR ^a	MSI-H/dMMR	15%-20% endometrial cancer 15%-20% gastric adenocarcinoma	IC	PD-1 checkpoint inhibitors	Marcus et al., Clin Can Res 2019 ⁴
RET	Fusions	7% thyroid papillary cancer 2% salivary gland cancer	IC	RET inhibitors	Subbiah et al., Lancet Oncol 2022 ⁵ Subbiah et al., Nat Med 2022 ⁶
BRAF	Mutations (p.V600E)	40%-45% melanoma 5%-6% small intestinal adenocarcinoma	IC	BRAF inhibitors + MEK inhibitors	Subbiah et al., Cancer Discov 2020 ⁷ Salama et al., J Clin Oncol 2020 ⁸
FGFR1/2/3	Fusions Mutations	20%-40% bladder cancer 3% glioblastoma multiforme 10%-20% urothelial carcinoma 10% endometrial cancer	IC	Pan-FGFR TKIs	Pant et al., Lancet Oncol 2023 ⁹
TMB-H ^a	ТМВ-Н	40% small-cell lung cancer	IC	PD-1/PD-L1 checkpoint inhibitors	Valero et al., JAMA Oncol 2021 ¹⁰ Friedman et al., Cancer Discov 2022 ¹¹

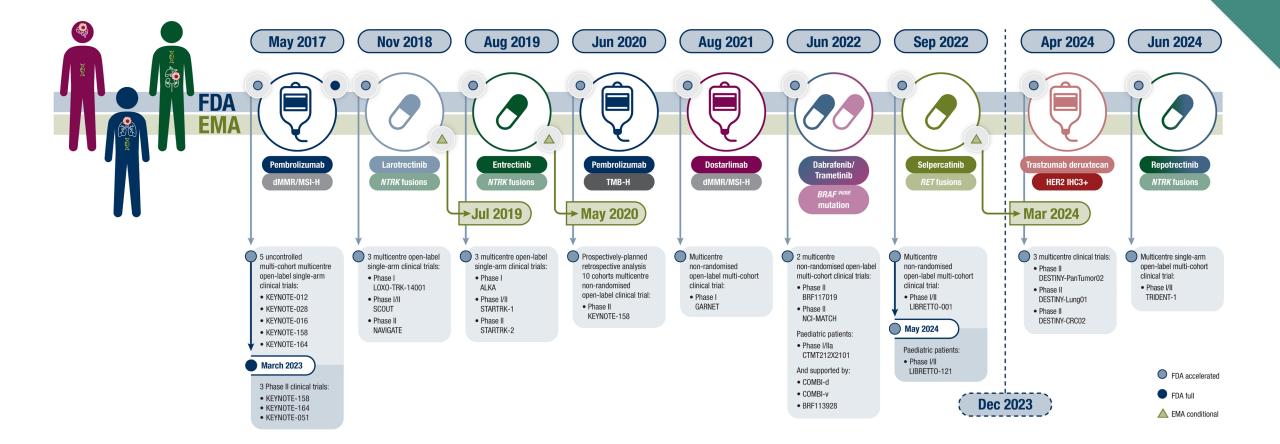
dMMR, mismatch repair deficient; ESCAT, ESMO Scale for Clinical Actionability of molecular Targets; FGFR, fibroblast growth factor receptor; MSI-H, microsatellite instability-high; PD-1, programmed clell death protein 1; PD-L1, programmed death-ligand 1; TKIs, tyrosine kinase inhibitors; TMB-H, tumor mutation burden-high; TRK, tropomyosin receptor kinase. ^aSignature; TKIs, tyrosine kinase inhibitors.

What makes a target alteration and a molecularly guided treatment option tumour-agnostic?

SPECIAL ARTICLE

Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group

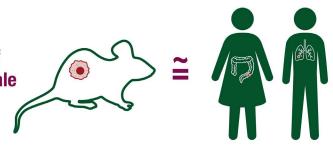
M. F. Mosele^{1,2}, C. B. Westphalen³, A. Stenzinger⁴, F. Barlesi^{1,2,5}, A. Bayle^{5,6,7,8}, I. Bièche⁹, J. Bonastre^{7,8}, E. Castro¹⁰, R. Dienstmann^{11,12,13}, A. Krämer^{14,15}, A. Czarnecka^{16,17}, F. Meric-Bernstam¹⁸, S. Michiels^{7,8}, R. Miller^{19,20}, N. Normanno²¹, J. Reis-Filho^{22†}, J. Remon², M. Robson²³, E. Rouleau²⁴, A. Scarpa²⁵, C. Serrano¹¹, J. Mateo¹¹ & F. André^{1,2,5+}


Tumour-agnostic

- ✓ Non-squamous NSCLC
- ✓ Breast cancer
- ✓ Colorectal cancer
- ✓ Prostate cancer
- ✓ Gastric cancer
- ✓ Pancreatic cancer
- ✓ Ovarian cancer

- ✓ Hepatocellular carcinoma
- Rare tumours:
 Cholangiocarcinoma, *GIST*,
 Soft tissue sarcomas,
 Thyroid cancer, CUP

TUMOUR-AGNOSTIC APPROVED INDICATIONS



GOOD SCIENCE BETTER MEDICINE BEST PRACTICE

ETAC-S: ESMO TUMOUR-AGNOSTIC CLASSIFIER AND SCREENER

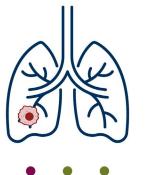
Minimum requirements for tumour-agnostic potential

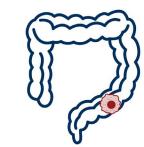
Robust preclinical evidence of mechanistic/biological rationale

SPECIAL ARTICLE

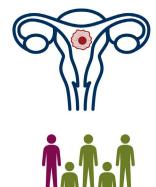
The ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): a tool for assessing tumour-agnostic potential of molecularly guided therapies and for steering drug development

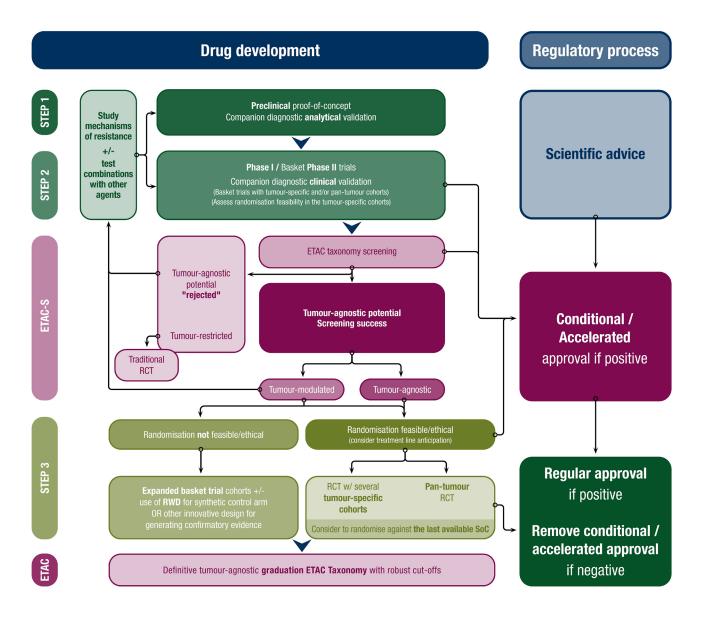
ANNALS OF


C. B. Westphalen^{1,2*†}, D. Martins-Branco^{3†}, J. R. Beal⁴, C. Cardone⁵, N. Coleman^{6,7,8}, A. M. Schram^{9,10}, S. Halabi^{11,12}, S. Michiels^{13,14}, C. Yap¹⁵, F. André^{16,17,18}, F. Bibeau¹⁹, G. Curigliano^{20,21}, E. Garralda²², S. Kummar²³, R. Kurzrock²⁴, S. Limaye²⁵, S. Loges^{26,27}, A. Marabelle²⁸, C. Marchió^{29,30}, J. Mateo²², J. Rodon³¹, T. Spanic³², G. Pentheroudakis^{3†} & V. Subbiah^{33‡}

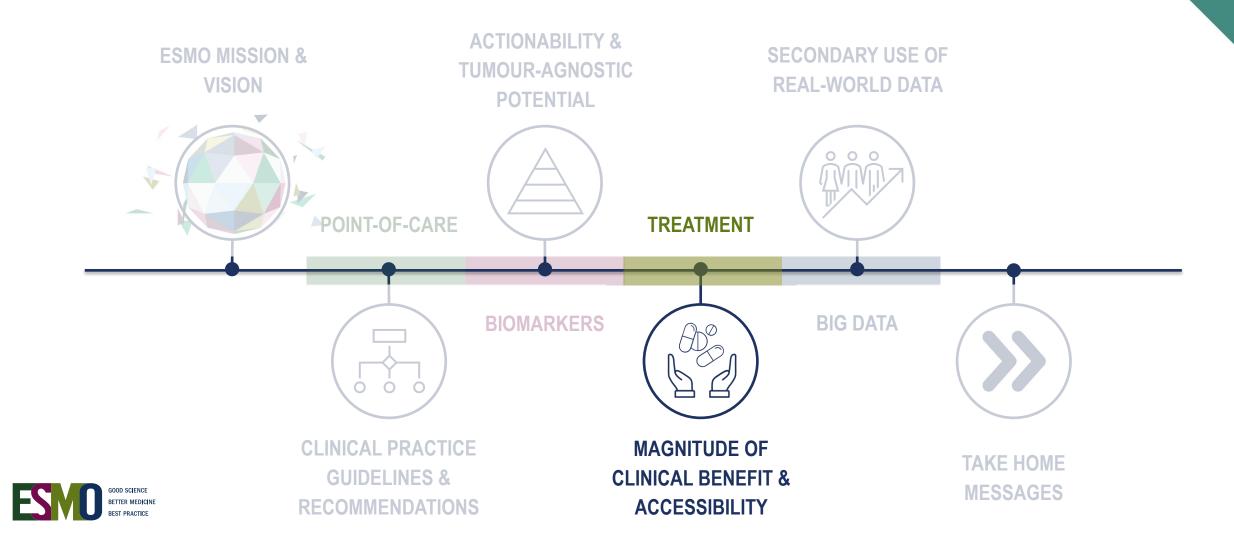

Phase I/II or Phase II trials

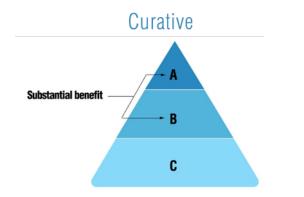
2/3 tumours investigated and \geq 4 tumour types with

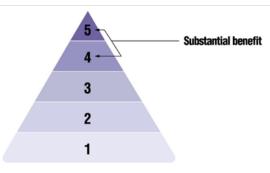

Minimum ORR \geq 20% in \geq 5 evaluable patients with refractory disease



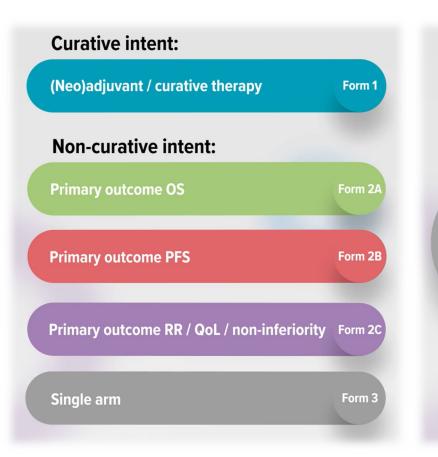
ETAC-S: ESMO TUMOUR-AGNOSTIC CLASSIFIER AND SCREENER

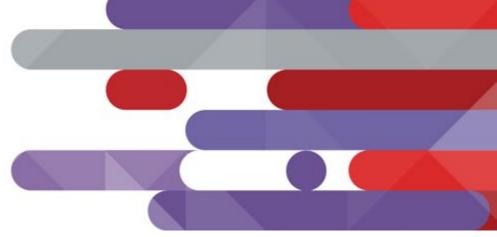

The ETAC-S is an easily applicable set of minimum requirements designed to identify molecularly guided treatment options eligible for tumouragnostic potential.

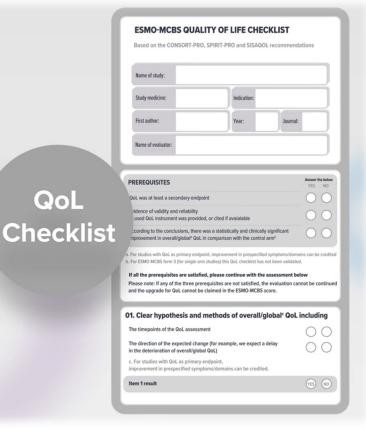

Proposed tumour-agnostic framework allows to foster and accelerate drug development for patients with cancer.


DEFINING STANDARDS

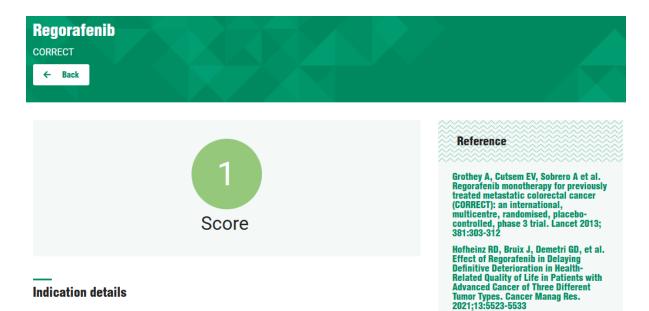
ESMO Frameworks and Tools




Non-curative

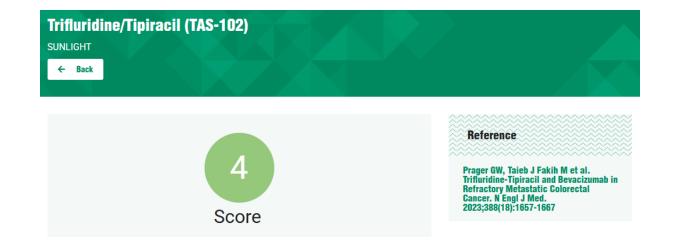


Cherny et al, Ann Oncol 2015 & 2017



Patient with mCRC RAS-wt/BRAF-wt/HER2-neg who have been previously treated with fluoropyrimidine-based ChT, an anti-VEGF therapy and an anti-EGFR therapy.

 <u>Regorafenib</u> [ESMO-MCBS v1.1 score: 1] is recommended in patients pre-treated with fluoropyrimidines, oxaliplatin, irinotecan and biologics, if available, or in earlier lines of therapy following oxaliplatin and irinotecan regimen failure, depending on local approvals [I, A].


Primary Outcome(s) os Evaluated Outcome os Form(s) Form 2a

Outcome Data

Patient with mCRC RAS-wt/BRAF-wt/HER2-neg who have been previously treated with fluoropyrimidine-based ChT, an anti-VEGF therapy and an anti-EGFR therapy.

Trifluridine-tipiracil (TAS-102) [ESMO-MCBS v1.1 score: 3] is recommended in patients pretreated with fluoropyrimidines, oxaliplatin, irinotecan and biologics, if available, or in earlier lines of therapy following oxaliplatin and irinotecan regimen failure, depending on local approvals [I, A]. The addition of bevacizumab to third- or later-line trifluridine-tipiracil should be considered if available [I, A; trifluridine-tipiracil-bevacizumab: ESMO-MCBS v1.1 score: 4].

Primary Outcome(s) OS Evaluated Outcome OS Form(s) Form 2a

Outcome Data

https://mcbs.esmo.org/scoringtool/categories

Primary Outcome(s)

ESMO STUDY ON THE AVAILABILITY, OUT-OF-POCKET COSTS AND ACCESSIBILITY OF ANTINEOPLASTIC MEDICINES

A		Lung		Breast	GIST	Melanoma		
A –	Erlotinib	Gefitinib	Gefitinib Afatanib		Imatinib	Nivo	Pembro	
igh income countries								
ustralia								
ustria								
elgium								
anada								
hile								
roatia								
yprus								
zech Republic								
enmark								
stonia								
inland								
rance								
ermany								
reece								
ungary								
eland								
eland								
rael								
aly								
apan								
uwait								
atvia								
thuania								
uxembourg								
lalta								
etherlands								
ew Zealand								
orway								
man								
oland								
ortugal								
atar								
epublic of Korea								
audi Arabia								
ingapore								
lovakia								
lovenia								
pain								
weden								
witzerland								
awian								
nited Arab Emirates								
nited Kingdom								
nited States of America								

SPECIAL ARTICLE

ESMO Global Consortium Study on the availability, out-of-pocket costs, and accessibility of cancer medicines: 2023 update

N. I. Cherny^{1+†}, D. Trapani^{2,3†}, M. Galotti⁴, M. Saar^{5,6}, G. Bricalli⁴, F. Roitberg^{7,8}, B. Gyawali⁹, G. Curigliano^{2,3}, J.-Y. Blay¹⁰, K. Meier^{6,11}, N. J. Latino⁴ & E. G. E. de Vries¹²

Figure 3. New and expensive immune-mediated and targeted therapies on the 22nd WHO EML - formulary availability and out-of-pocket costs. (A) High- and upper middle-income countries. (B) Lower-middle- and low-income countries.

٠

PUBLIC POLICY

- Grading derived from the ESMO-MCBS provides a backbone for value evaluations.
- Can help public policymakers in the advancement of 'accountability for reasonableness' in resource allocation deliberations

CLINICAL GUIDELINES

- ESMO-MCBS provides a clear, well-structured and validated mechanism to indicate the magnitude of clinical benefit.
 - This, in addition to the level of evidence, can inform both national and international guidelines

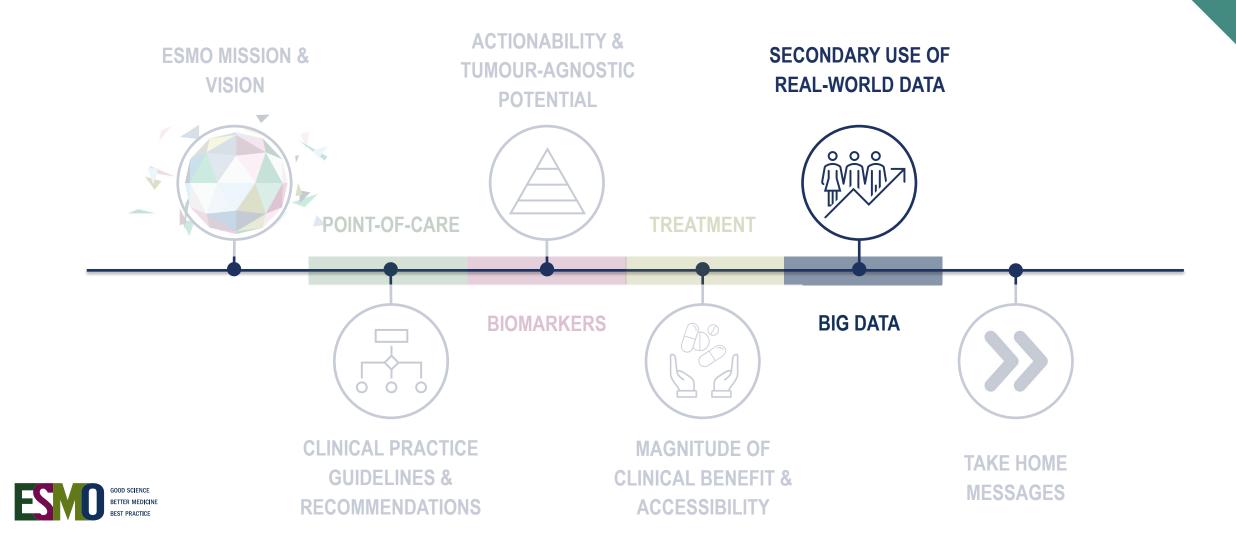
CLINICAL DECISION

- ESMO-MCBS scoring can help clinicians <u>weigh</u> the relative merits of competing relevant therapeutic options.
- Can assist <u>explaining</u> the relative merit of therapeutic options to patients and their families.

EDITORIAL DECISION

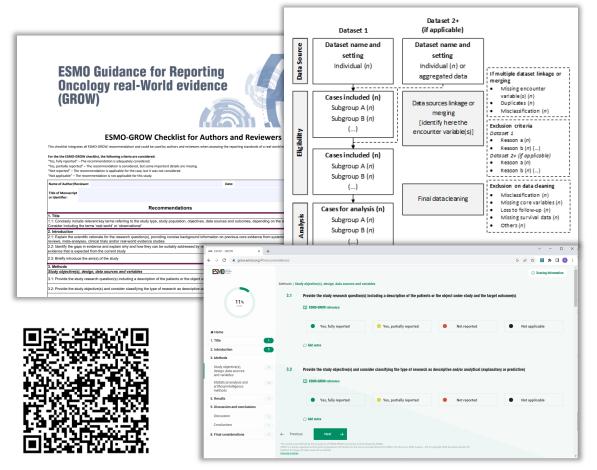
The ESMO-MCBS may be of use to editors, peer reviewers and commentators in considering the clinical significance of research findings

EDUCATION


- The ESMO-MCBS is a powerful tool to teach a disciplined and validated approach to data interpretation.
- It is especially valuable for oncologists in training and for application in journal club discussion.

DEFINING STANDARDS

ESMO Frameworks and Tools


ESMO GUIDANCE FOR REPORTING ONCOLOGY REAL-WORLD EVIDENCE (ESMO-GROW)

The first reporting guidance specifically developed for oncology RWE studies

- Detailed **list of recommendations** for authors and reviewers of RWE publications.
- Broad Scope: **Descriptive to Analytical**
- Addresses new treatments, molecular-based epidemiology, oncology-specific variables, and tech-based RWE research (AI, machine learning)
- Facilitates harmonised interpretation by all stakeholders

ESMO RWDD

• Related Materials: Online Tool, Checklist, Flowchart

Castelo-Branco L et al. "ESMO Guidance for Reporting Oncology real-World evidence (GROW)". Ann Oncol 2023; 34: 10.1016/j.annonc.2023.10.001 & ESMO Real World Data & Digital Oncol 2023; 1: 10.1016/j.esmorw.2023.10.001

ESMO GUIDANCE FOR REPORTING ONCOLOGY REAL-WORLD EVIDENCE (ESMO-GROW)

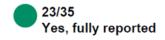
Reporting informative score

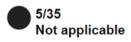
 Observational Study
 > Future Oncol. 2024 Apr;20(12):761-780. doi: 10.2217/fon-2023-0858.

 Epub 2024 Jan 17.

Real-world comparative effectiveness of palbociclib plus aromatase inhibitor in HR+/HER2- metastatic breast cancer

```
Nicholas Robert <sup>1</sup>, Connie Chen <sup>2</sup>, Sindy Kim <sup>3</sup>, Zhe Zhang <sup>3</sup>, Kathleen M Aguilar <sup>1</sup>, Yunfei Wang <sup>1</sup>, Benjamin Li <sup>2</sup>, Michael Gaffney <sup>2</sup>, Xin Huang <sup>3</sup>, Lynn McRoy <sup>2</sup>
```


Affiliations + expand PMID: 38231045 DOI: 10.2217/fon-2023-0858


ESMO-GROW informative Score

Detailed Scoring

Reporting informative score useful for:

- ✓ authors while drafting the manuscript
- ✓ editors and peer-reviewers after submission
- ✓ readers while critically appraising the report

ESMO FRAMEWORKS AND TOOLS - TAKE HOME MESSAGES

CLINICAL PRACTICE GUIDELINES & RECOMMENDATIONS

- ✓ ESMO Clinical Practice Guidelines provide recommendations to help HCPs and patients with the best care options.
- ESMO produces Precision Oncology Statements for the optimal practice of molecular oncology and for safely combining radiotherapy with targeted agents or immunotherapy.

ACTIONABILITY & TUMOUR-AGNOSTIC POTENTIAL

- SCAT is a systematic framework to rank molecular targets based on evidence available supporting their value as clinical targets.
- ✓ ESMO Tumour-Agnostic Classifier and Screener sets minimum requirements for treatments eligible for tumour-agnostic potential.

MAGNITUDE OF CLINICAL BENEFIT & ACCESSIBILITY

 ESMO-MCBS facilitates improved decision-making regarding the value of anti-cancer therapies, promotes accessibility and reduces inequity of access to high value cancer treatments.

SECONDARY USE OF REAL-WORLD DATA

✓ ESMO-GROW recommendations checklist can be used by authors and reviewers for assessing the reporting of RWE studies.

THANK YOU FOR YOUR ATTENTION

https://www.esmo.org/scales-and-tools https://www.esmo.org/guidelines

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

