

HOW DO I TREAT PATIENTS WITH EGFR MUTATIONS?

Prof. Pilar Garrido MD PhD

Co-Director Cancer Research Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)

Head Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain

DECLARATION OF INTERESTS

Personal financial interests

Consultancy/honoraria from AbbVie, Amgen, AstraZeneca, Bayer, BMS, Boehringer Ingelheim, Daiichi Sankyo, GlaxoSmithKline, Janssen, Lilly, MSD, Novartis, Pfizer, Roche, Sanofi and Takeda.

Direct funding from Medscape and Touch Medical.

Institutional research funding from Amgen, AstraZeneca, Blueprint, BMS, Boehringer Ingelheim, Daiichi Sankyo, GlaxoSmithKline, Janssen, IO Biotech, Lilly, MSD, Novartis, Pharmamar, Pfizer,

Roche, Sanofi, Takeda, Theradex Oncology,.

Non-financial interests

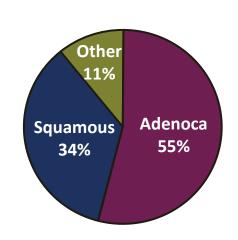
ESMO Council member as Women for Oncology Committee Chair.

ESMO Faculty for lung and other thoracic tumours.

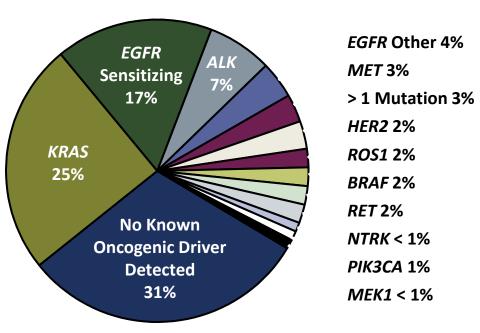
IASLC Academy and Educational Committee member.

Former President of Spanish Medical Oncology Society (SEOM) and Spanish Federation of Medical Societies (FACME).

Member of the Spanish National Health Advisory Board.

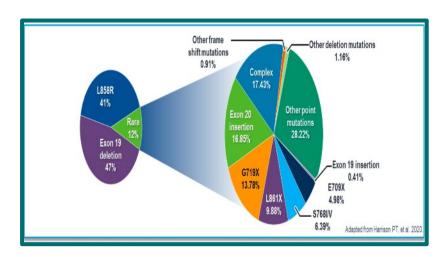

President of the National Technical Committee and Executive Board member of the the Spanish Patients Against Cancer Association (AECC) and Member of the Scientific Committee of their

Research Foundation.


Member of the Scientific Committee of the Spanish Lung Cancer Patient's Advocacy Association (AECAP)

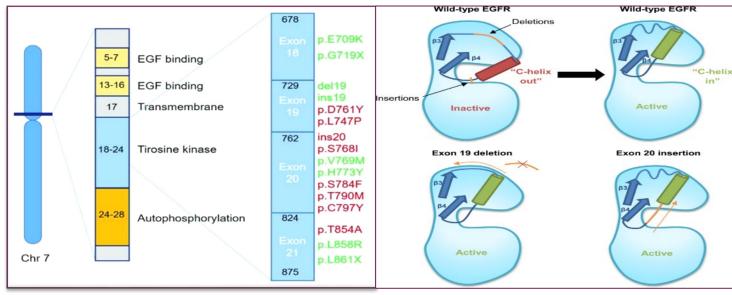
LUNG CANCERs: MANY DISEASES!

Adenocarcinoma



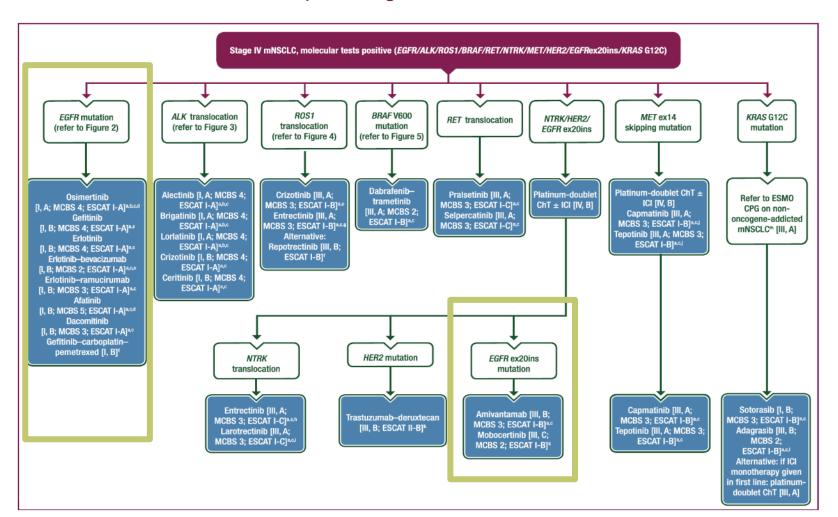
Then Histology-Based Subtyping Now

Li. JCO. 2013;31:1039. Tsao. J Thorac Oncol. 2016;11:613.


EGFR MUTATIONS

- 10- 14% NSCLC tumors in Western pop/30-50% Asian
- Clinical profile: non-smokers, female, CNS+, adenocarcinoma
- Common EGFR mutations (85%): ex19del & ex21 (L858R) mut.
- Exon 20 ins mut (4%): in-frame ins or dupl between amino acid positions 762 and 774 of the EGFR protein
- Uncommon EGFR mutations: ex18 & ex20, rarer ex19
 & ex21 mut., i.e., L861Q (ex21)

Pilar Garrido. Hospital Universitario Ramón y Cajal, Madrid, Spain

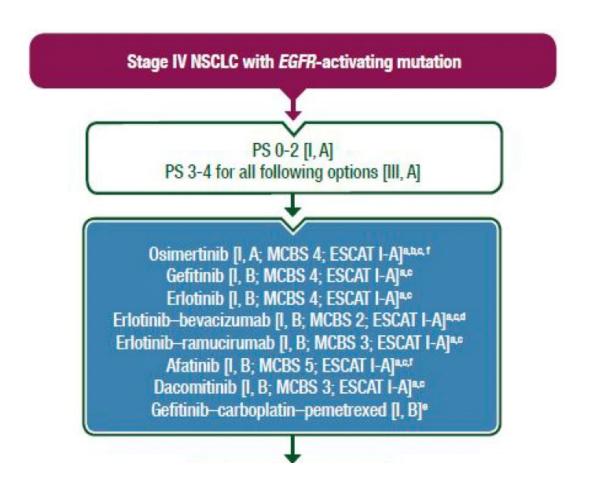


Van Sanden, S., et al. Targ Oncol 2022, Vyse, S., et al. Sig Transduct Target Ther 2019, Ferreira D et al, Int. J. Mol. Sci. 2021

ESMO GUIDELINES

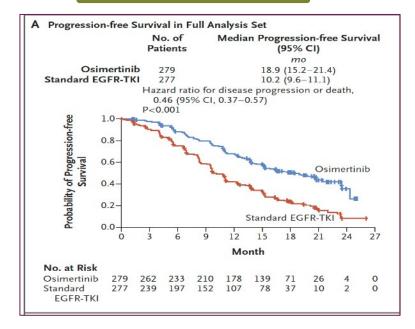
Different recommendations depending on the EGFR mutation

Hendriks L et al. Ann Oncol 2023

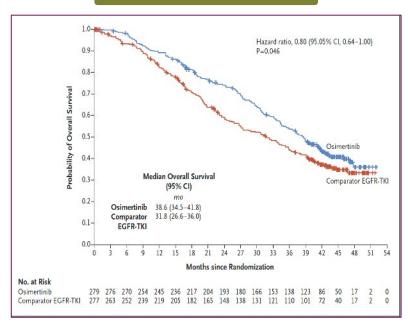

COMMON EGFR MUTATIONS

ESMO GUIDELINES

Classical sensitizing EGFR mutation, treatment naïve aNSCLC


Hendriks L et al. Ann Oncol 2023;

OSIMERTINIB: FIRST LINE GOLD STANDARD


Osimertinib, a third-generation, CNS active EGFR-TKI, is the preferred first-line treatment for EGFRm advanced NSCLC based on superior PFS / OS benefit with osimertinib vs comparator EGFR-TKIs in the FLAURA study

FLAURA double-blind study design Patients with locally advanced or metastatic NSCLC RECIST 1.1 assessment every Key inclusion criteria 6 weeks until objective ≥18 years (≥20 years in Japan) mulation status WHO performance status 0 / 1 (Ex19del / L858R Randomised 1:1 Ex19del / L858R /emplment by local. progression events by RECIST 1.1 or central EGFR testing) Comparator EGFR-TKI were no longer centrally collected Gefitinib (250 mg p.a. qd) o: No prior systemic anticancer / EGFR-TKI therapy Eriotinib (150 mg p.o. qd) Crossover was allowed for patients · Stable CNS metastases allowed in the comparator EGFR-TKI arm, who could receive open-label osimertinib upon central confirmation of progression* and T790M positivity. OS was a key secondary endpoint Final OS analysis planned for when approximately 318 death events had occurred For statistical significance, a p-value of less than 0.0495, determined by O'Brien-Fleming approach, was required. Alpha spend for interim OS analysis was 0.0015 • At data cut-off, 61 patients (22%) in the osimertinib arm and 13 patients (5%) in the comparator arm were ongoing study treatment Data out off, 25 June 20

Median PFS 18 months

Median OS 39 months

Soria JC, NEJM 2018; Ramalingan S, NEJM 2019

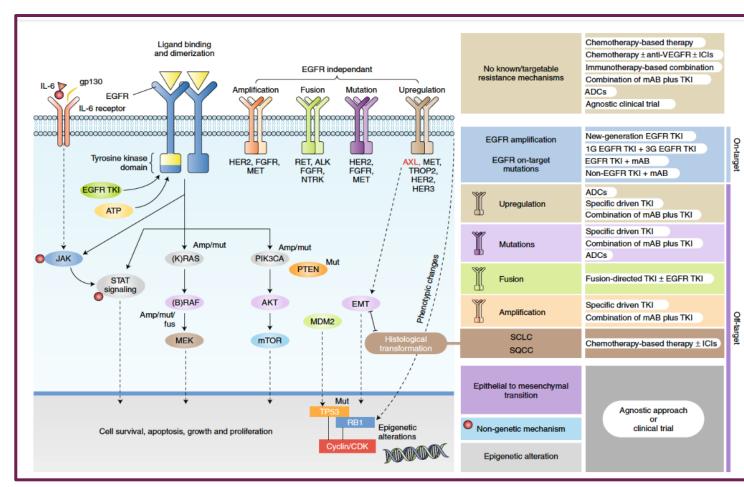
3RD GENERATION EGFR TKIS BEYOND OSIMERTINIB

	Lazertinib ^a	Almonertinib ^b	Furmonertinib ^c	TY-9591	SH-1028	Limertinib ^d	Abivertinib ^e	Befotertinib ^f	Rezivertinib ^g
Structure Respect To Osi	pyrimidine and on phenyl rings	cyclopropyl group on the indole group	tphenyl ring and methyl group	Not released	indole ring	Indole and pyrimidine ring	pyrimidine and on phenyl rings	Not released	oxygen replacing on phenyl ring
IC ₅₀ nM (T790M+)	1.85	0.37	Not released	Not released	0.55	0.3	0.18	Not released	GI ₅₀ 22 nM
RP2D	240 mg	110 mg	80 mg	160 mg	200 mg	160 mg BID	300 mg BID	75-100 mg	180 mg
MTD	Not reached	Not reached	Not reached	unpublished	unpublished	unpublished	Not reached	Not reached	Not reached
Approved for T790M+	Korea 18 January 2021	China 18 March 2020	China 3 March 2021	-	-	-	-	-	-
Trial	Phase I/II Lee 2020 [<u>84</u>]	Apollo Lu 2020 [<u>91</u>]	Phase I/II Shi 2021 [<u>92</u>]	NCT04204473 Ongoing	Phase I/II Xiong 22 [<u>93</u>]	Phase IIb Li 2022 [<u>94</u>]	Phase I/II Zhou 2022 [<u>95</u>]	Phase I/II Lu 2022 [<u>96]</u>	Phase I Shi 2022 [<u>97</u>]
ORR (T790M+)	58%	69%	74%	-	60.4%	68.8%	56.5%	67.6%	60.5%
mPFS mos (T790M+)	11	12.3	9.6	-	12.6	11	8.5	16.6	9.7
Approved for	Korea 30 June	China 4 December	China 28 June	-	-	-	-	-	-

Pilar Garrido. Hospital Universitario Ramón y Cajal, Madrid, Spain

3RD GENERATION EGFR TKIS BEYOND OSIMERTINIB

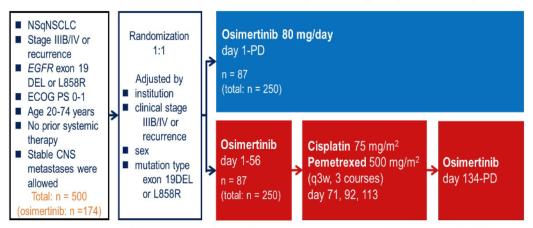
	Lazertinib ^a	Almonertinib ^b	Furmonertinib ^c	TY-9591	SH-1028	Limertinib ^d	Abivertinib ^e	Befotertinib ^f	Rezivertinib ^g
Structure Respect To Osi	pyrimidine and on phenyl rings	cyclopropyl group on the indole group	tphenyl ring and methyl group	Not released	indole ring	Indole and pyrimidine ring	pyrimidine and on phenyl rings	Not released	oxygen replacing on phenyl ring
IC ₅₀ nM (T790M+)	1.85	0.37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.18	Not released	GI ₅₀ 22 nM		
RP2D	240 mg	110 mg	80 mg	160 mg	200 mg	160 mg BID	300 mg BID	75-100 mg	180 mg
MTD	N	t reached	Not reached						
for T790M+	results the real advantage taken from more similar drugs available in the market will be								
Trial	Le	от розоти						2022 [<u>96</u>]	Shi 2022 [<u>97</u>]
ORR (T790M+)	58%	69%	74%	-	60.4%	68.8%	56.5%	67.6%	60.5%
mPFS mos (T790M+)	11	12.3	9.6	-	12.6	11	8.5	16.6	9.7
Approved for	Korea 30 June	China 4 December	China 28 June	-	-	-	- Attili I. Cancers	- : 2023	-


Pilar Garrido. Hospital Universitario Ramón y Cajal, Madrid, Spain

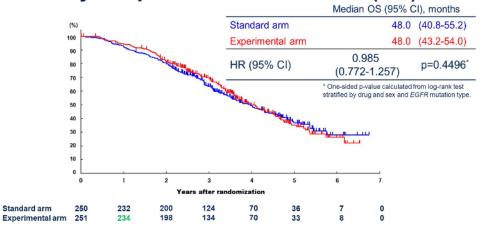
3RD GENERATION EGFR TKIs IN EGFRm NSCLC

Study	Region	N	3 rd gen EGFR TKI	ORR	PFS (HR)	OS (HR)
FLAURA	Global	556	Osimertinib	80% v 76%	18.9m v 10.2m (0.46)	38.6 v 31.8 (0.8)
AENEAS	China	429	Aumolertinib	74% v 72%	19.2m v 9.9m (0.46)	Not reported
FURLONG	China	358	Furmonertinib	89% v 84%	20.8m v 11.1m (0.44)	Not reported
Shun Lu	China	362	Befotertinib	76% v 78%	22.1m v 13.8 (0.49)	Not reported
Cho et al	Global	393	Lazertinib	76% v 76%	20.6m v 9.7 (0.45)	Not reported

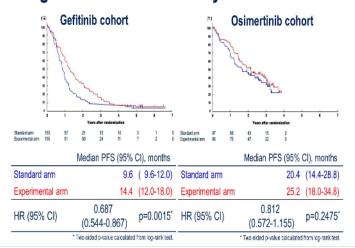
IMPROVING LONG-TERM RESULTS IS KEY


- Treatment options to prevent/delay progression:
 - CT+ EGFR TKIs
 - Amivantamb + EGFR TKI
 - VEGF inhibitors + EGFR TKIs
- Treatment options after disease progression:
 - Biomarker-driven approaches
 - Agnostic strategies

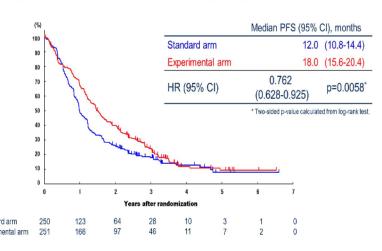
Passaro A, Peters S. Nature Cancer 2021


EGFR TKI + CT UPFRONT: AGAIN NEGATIVE TRIAL

JCOG1404/WJOG8214L study design (revised)



In October 2018, EGFR-TKI was changed from gefitinib to osimertinib considering the results of FLAURA study.

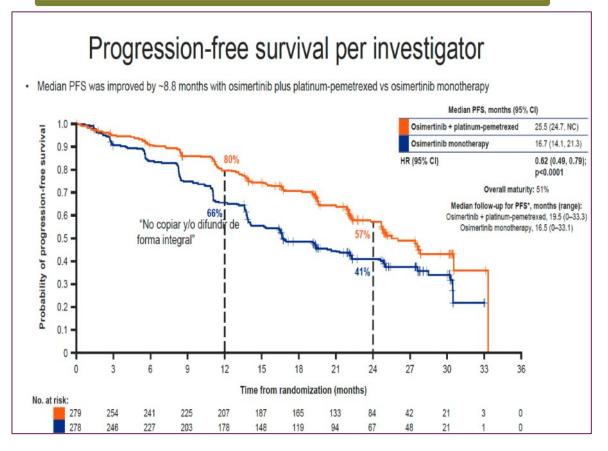

Primary endpoint: Overall survival (ITT)

Progression-free survival by EGFR-TKI

Progression-free survival (ITT)

Response rates and subsequent therapies

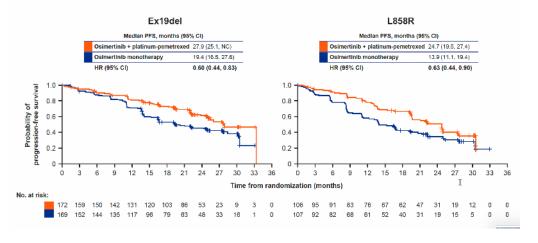
	Star	ndard	Experimental		
Overall response rate (95% CI)		78.0% 71.6% (72.0%-83.3%) (65.3%-77			
п	Gefitinib 153	Osimertinib 97	Gefitinib 155	Osimertinib 96	
Ongoing study treatment	5	31	5	27	
Discontinued study treatment	148	66	150	69	
1st subsequent therapy	139	61	139	65	
3rd generation EGFR-TKI	29	32*	25	43*	
The other EGFR-TKI	78*	7	97*	5	
Platinum-based therapy	29	21	11	12	
The other chemotherapy	3	1	6	5	
2nd subsequent therapy	117	44	102	40	
3rd generation EGFR-TKI	37	4	39	1	
The other EGFR-TKI	8	6	18	4	
Platinum-based therapy	60	24	22	22	
The other chemotherapy	12	10	23	13	

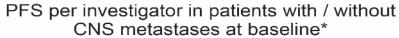

noluding gefitinib or osimertinib beyond PD

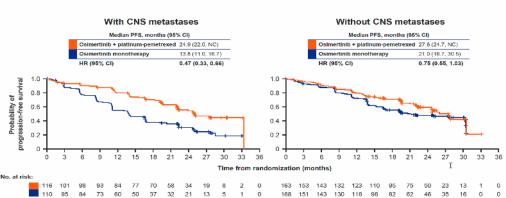
Kanda S. ASCO 2023

OSIMERTINIB WITH / WITHOUT PLATINUM-BASED CT (FLAURA 2)

Safety run-in period (N=30) Published in ESMO Open, 20211 Osimertinib 80 mg (QD) + pemetrexed 500 mg/m² + carboplatin AUC5 Maintenance or cisplatin 75 mg/m² osimertinib 80 mg (QD) Patients with untreated locally (Q3W for 4 cycles for + pemetrexed (Q3W) advanced / metastatic EGFRm NSCLC Stratification by: platinum-based Follow-up: treatments) Race (Chinese Asian / RECIST 1.1 assessment at Key inclusion criteria: non-Chinese Asian 6 and 12 weeks, then every Aged ≥18 years (Japan: ≥20 years) non-Asian) Randomization 1:1 (N=557) 12 weeks until RECIST 1.1 · Pathologically confirmed defined radiological disease 1:1 (N=557) EGFRm (local / central non-squamous NSCLC progression or other withdrawal test) Ex19del / L858R (local / central test) criteria were met • WHO PS (0 / 1) Osimertinib 80 mg (QD) • WHO PS 0 / 1 No prior systemic therapy for advanced NSCLC • Primary endpoint: PFS by investigator assessment per RECIST 1.1^{‡§} Stable CNS metastases were allowed* · Sensitivity analysis: PFS by BICR assessment per RECIST 1.1 Brain scans at baseline (MRI / CT) Secondary endpoints: OS, ORR, DoR, DCR, HRQoL, safety (AEs by CTCAE v5) and PFS2[‡]

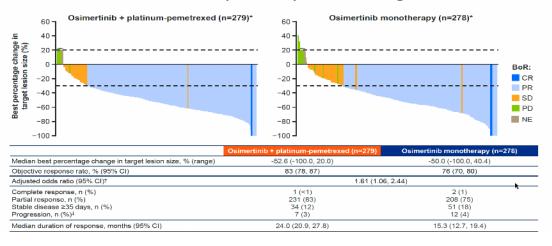

9 months improvement in PFS!




Janne P WCLC 2023; Planchard D, NEJM 2023

FLAURA 2 KEY FINDINGS

PFS per investigator by EGFR mutation type at baseline*


Pilar Garrido. Hospital Universitario Ramón y Cajal, Madrid, Spain

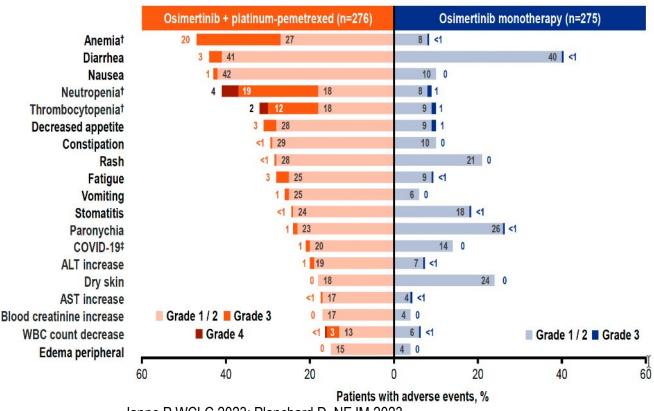
PFS per investigator across subgroups*

· PFS benefit was consistent across all pre-defined subgroups

Subgroup		Osimertinib + platinum-pemetrexed (Events / patients)	Osimertinib monotherapy (Events / patients)		HR (95% CI)
All patients	Stratified log-rank	120 / 279	166 / 278	——— I	0.62 (0.49, 0.79)
All patients	Unadjusted Cox PH	120 / 279	166 / 278	— —	0.62 (0.49, 0.78)
Sex	Male	51 / 106	73 / 109		0.54 (0.37, 0.77)
JEX	Female	69 / 173	93 / 169		0.67 (0.49, 0.92)
	Chinese Asian	26 / 71	43 / 69	——————————————————————————————————————	0.49 (0.30, 0.81)
Race	Non-Chinese Asian	54 / 107	65 / 107		0.76 (0.53, 1.09)
	Non-Asian	40 / 101	58 / 102		0.55 (0.37, 0.83)
EGFR mutation test method	Central	52 / 121	67 / 119		0.73 (0.51, 1.05)
	Local	68 / 158	99 / 159		0.55 (0.40, 0.74)
	<65 years	73 / 174	97 / 166		0.59 (0.44, 0.80)
Age at screening	≥65 years	47 / 105	69 / 112	——————————————————————————————————————	0.68 (0.47, 0.98)
S	Yes	43 / 91	57 / 97	·	0.63 (0.42, 0.94)
Smoking history	No	77 / 188	109 / 181		0.61 (0.46, 0.82)
EGEDtalian tanat	Ex19del	65 / 172	94 / 169	-	0.60 (0.44, 0.83)
EGFR mutation type†	L858R	55 / 106	70 / 107	i	0.63 (0.44, 0.90)
W// 10 PO	0	48 / 101	57 / 102		0.79 (0.54, 1.16)
WHO PS	1	72 / 178	109 / 176	i	0.53 (0.39, 0.72)
CNC status at baseline	Yes	52 / 116	79 / 110	i	0.47 (0.33, 0.66)
CNS status at baseline	No	68 / 163	87 / 168		0.75 (0.55, 1.03)
			0.1	0.5 1	2
			Farmer and and and a	the end attack and a second at a	e Parisan automobile

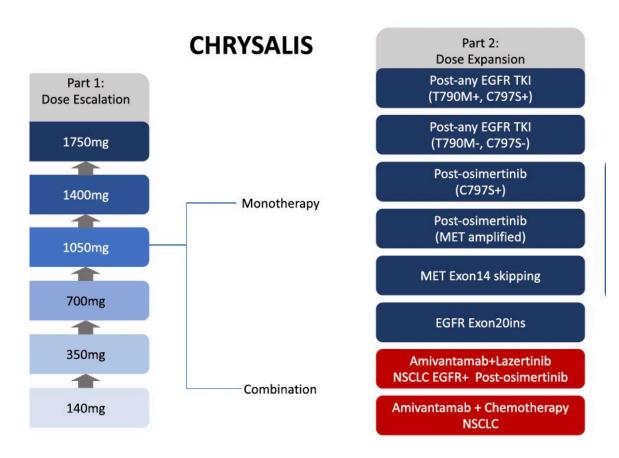
Tumor response per investigator

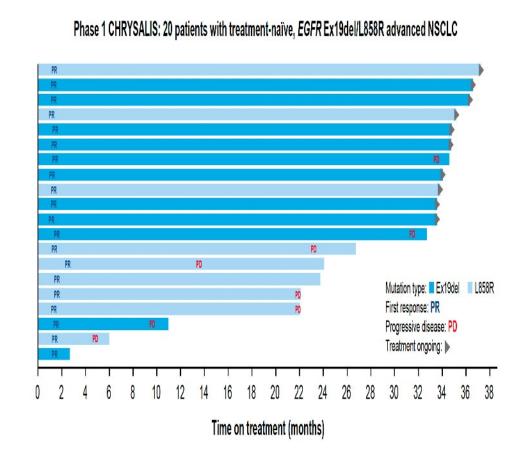
Janne P WCLC 2023; Planchard D, NEJM 2023


Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

FLAURA 2 LONGER PFS BENEFIT COMES AT THE COST WITH HIGHER TOXICITY

AEs (Combo vs Osi)


- Grade 3 : 64% vs 27%
 - . Hematological 71% vs 24%
 - Pneumonitis 3% vs 4%
 - . Cardiac Effects 9% vs 4%
 - . Deaths 5 vs 1
- Leading to
 - Discontinuation 11% vs 6%
 - Interruption 43% vs 19%
 - Dose reduction 10% vs 3%


Common adverse events (≥15% of patients)*

Janne P WCLC 2023; Planchard D, NEJM 2023

LAZERTINIB + AMIVANTAMAB: RATIONALE

Cho BC, et al. J Thorac Oncol. 2022;17(9_suppl):S126. 2. Lee S-H, et al. J Clin Oncol. 2023;41(16_suppl):9134

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

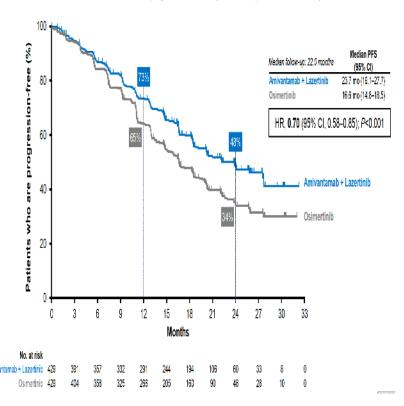
MARIPOSA: PHASE 3

Serial brain MRIs were required for all patients^a **Key Eligibility Criteria** Amiyantamab + Lazertinib Locally advanced or metastatic NSCLC (n=429; open-label) Treatment-naïve for advanced disease Osimertinib Documented EGFR Ex19del or L858R (n=429; blinded) ECOG PS 0 or 1 2:2:1 Lazertinib Stratification Factors (n=216; blinded) EGFR mutation type (Ex19del or L858R) Asian race (yes or no) Dosing (in 28-day cycles) History of brain Amivantamab: 1050 mg (1400 mg if ≥80 kg) weekly for the first 4 weeks, then every 2 weeks Lazertinib: 240 mg daily metastasesa (yes or no) Osimertinib: 80 mg daily

Primary endpoint of progression-free survival (PFS)^b by BICR per RECIST v1.1:

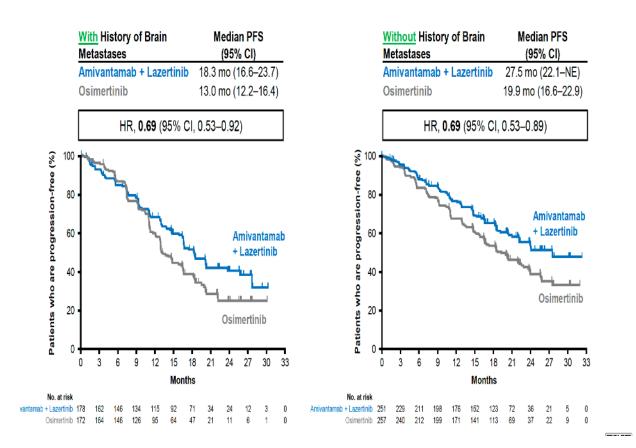
Amivantamab + lazertinib vs osimertinib

Secondary endpoints of amiyantamab + lazertinib vs osimertinib:


- Overall survival (OS)^b
- Objective response rate (ORR)
- Duration of response (DoR)
- PFS after first subsequent therapy (PFS2)
- Symptomatic PFS^c
- Intracranial PFS^c
- Safety

Lazertinib monotherapy arm was included to assess the contribution of components

7 months improvement in PFS!


Primary Endpoint: Progression-free Survival by BICRa

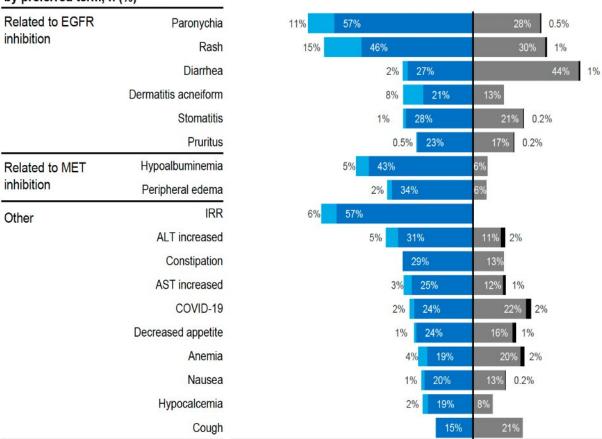
Amivantamab + lazertinib reduced the risk of progression or death by 30% and improved median PFS by 7.1 months

MARIPOSA: KEY RESULTS

Consistent PFS (BICR) Benefit With or Without Brain Metastases

PFS Benefit Seen Across Predefined Subgroups

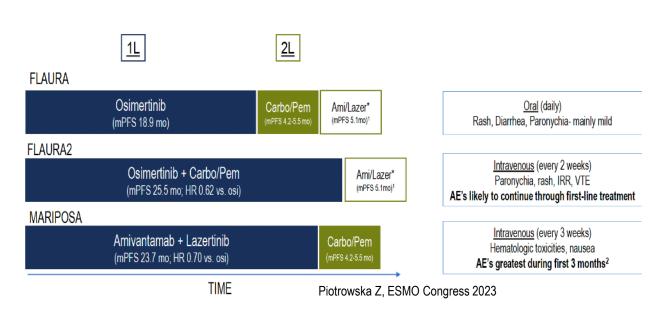
				Even	s/N	
Subgroup	Favors Amivantamab + Lazertinib	Favors Osimertinib	HR (95% CI)	Amivantamab + Lazertinib	Osimertinib	
All randomized	d patients		0.70 (0.58-0.85)	192/429	252/429	
Age category						
<65 years	+++		0.50 (0.39-0.65)	94/235	153/237	
≥65 years	H	→ -	1.06 (0.80-1.41)	98/194	99/192	
<75 years	I⊕I		0.70 (0.57-0.85)	165/378	220/376	
≥75 years	⊢•	 -	0.77 (0.46-1.30)	27/51	32/53	
Sex						
Female	H●H		0.70 (0.55-0.90)	112/275	140/251	
Male	⊢	(0.74 (0.55-0.98)	80/154	112/178	
Race			, ,			
Asian	H⊕H		0.67 (0.52-0.86)	105/250	144/251	
Non-Asian	⊢	-	0.75 (0.56-0.99)	85/117	108/177	
Weight catego	ry		, ,			
<80 kg	· ID		0.70 (0.57-0.86)	161/376	209/368	
≥80 kg	⊢•	 	0.77 (0.48-1.22)	31/53	43/61	
ECOG PS			,			
0	⊢•	 	0.79 (0.56-1.12)	56/141	76/149	
1	H ⊕ H		0.66 (0.52-0.82)	136/288	176/280	
History of smo	king					
Yes	· •	4	0.78 (0.56-1.08)	67/130	79/134	
No	H ⊕ H		0.67 (0.53-0.84)	125/299	173/295	
History of brain	n metastases		,			
Yes	H●H		0.69 (0.53-0.92)	94/178	111/172	
No	H⊕H		0.69 (0.53-0.89)	98/251	141/257	
EGFR mutatio	n		, ,			
Ex19del	H ⊕ H		0.65 (0.51-0.85)	101/257	142/257	
L858R	H	1	0.78 (0.59-1.02)	90/171	110/172	

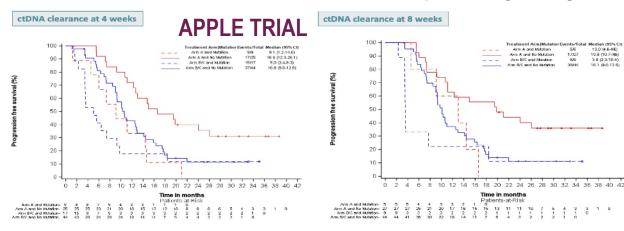

MARIPOSA: LONGER PFS BENEFIT COMES AT THE COST WITH HIGHER TOXICITY

Median treatment duration was 18.5 mo for amivantamab + lazertinib and 18.0 mo for osimertinib

TEAE, n (%)	Amivantamab + Lazertinib (n=421)	Osimertinib (n=428)
Any AE	421 (100)	425 (99)
Grade ≥3 AEs	316 (75)	183 (43)
Serious AEs	205 (49)	143 (33)
AEs leading to death	34 (8)	31 (7)
Any AE leading to treatment:		
Interruptions of any agent	350 (83)	165 (39)
Reductions of any agent	249 (59)	23 (5)
Discontinuations of any agent	147 (35)	58 (14)

Treatment-related AEs leading to discontinuations of all agents occurred in 10% of patients treated with amivantamab + lazertinib and 3% with osimertinib

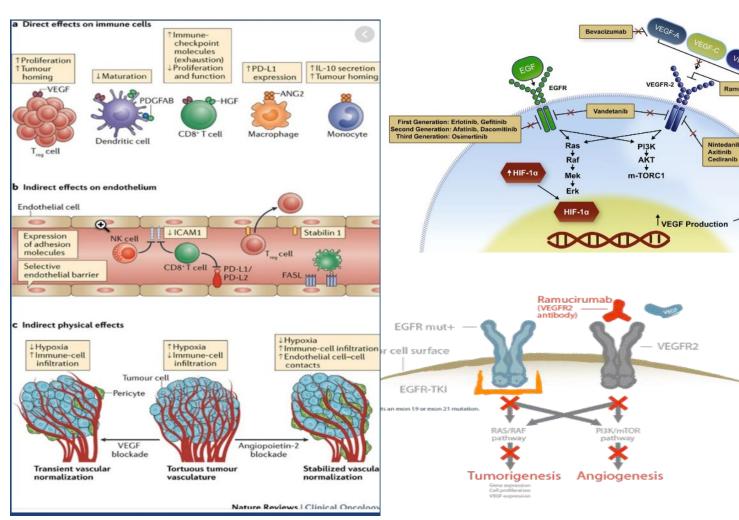

Most common TEAEs (≥20%) by preferred term, n (%)


VTE rates were higher for amivantamab + lazertinib: Pulmonary embolism and deep vein thrombosis

OPEN QUESTIONS IN THE FIRST LINE SETTING FOR EGFRm aNSCLC

- ✓ Key differences between FLAURA and MARIPOSA trial:
 - ✓ **Serial brain MRIs** required on MARIPOSA /FLAURA2
 - ✓ PFS by BICR (MARIPOSA) vs. Investigator (FLAURA2)
 - ✓ No crossover on MARIPOSA (vs. access to sequential chemo on FLAURA2) may impact final OS analysis.
- ✓ Toxicity impact: risk/benefit ratio
- ✓ PFS / OS
- ✓ Subsequent treatment options
- ✓ Selection of patients Which one?
 - ✓ ct DNA clearance?
 - FLAURA 24% persistent ctDNA at 3 wks (mPFS 11 mo) Gray J, et al. CCR 2023
 - ✓ Co-mutation status?
 - ✓ Clinical characteristics?

ctDNA clearance of *EGFR*m and PFS: exploratory analysis


EGFT-TKI AND ANTI-VEGF: RATIONALE

Synergistic preclinical activity

Resistance to EGFR inhibition associated with increased VEGF levels

EGFR signaling pathway can upregulate VEGF expression.

Alleviates immunosuppression and promotes efficient tumor infiltration by effector immune cells

CLINICAL VALUE OF DUAL INHIBITION VEGF/EGFR (ERLOTINIB)

		_		-				
STUDY	TREATEMENT	PHASE	N	mPFS	HR	RR	OS	HR
BELIEF	Erlotinib + Bev	II multinatio national	109	13	0.52 P:0.016	77	28.2	-
JO25567	Erlotinib <u>+</u> Bev	RII Japan	154	16 vs 9,7	0.52 P: 0.0005	69 vs 64	47 vs 47,4	0.81 P:0.3
ALLIANCE	Erlotinib <u>+</u> Bev	RII	88	17,9 vs 13,5	0.81 P:0.39	81 vs 83	32.4 vs 50,6	1.41 P:0.33
NEJ026	Erlotinib <u>+</u> Bev	III Japan	228	16,9 vs 13,3	0.61 P: 0.016	72 vs 66	46,2 vs 50,7	1.01 P::0-97
ARTemis CTONG1509	Erlotinib <u>+</u> Bev	III China	311	18 vs 11,3	0.55 P<0.001	86,3 vs 84,7	36.2 vs 31.6	0.92 P:0-58
RELAY	Erlotinib <u>+</u> Ramucirumab	III Multi	449	19.4 vs 12.4	0.59 P<0.001	76 vs 75	NR	0.83 pNS
Beverly	Erlotinib <u>+</u> Bev	III Italy		9.7 vs 15.4	0.60 P 0.0039		23 vs 28	0.7 P 0.12
irrido. Hospital Unive	ersitario Ramón v Caial. Ma	idrid, Spain						

OSIMERTINIB + BEVACIZUMAB UPFRONT: NEGATIVE TRIAL

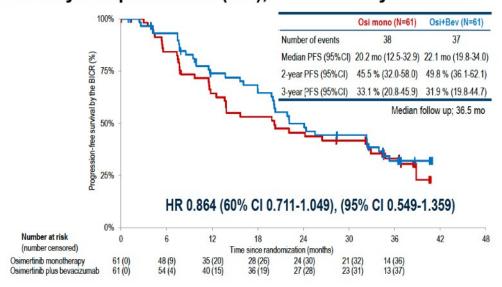
WJOG9717L: Study Design

KEY ELIGIBILITY CRITERIA

- Non-squamous NSCLC harboring EGFR activating mutations
- Clinical stage IIIB, IIIC, IV, or recurrence after surgical resection
- · Previously untreated
- ECOG PS 0-1
- · Age 20- years
- Absence of symptomatic brain metastases

Osimertinib (80 mg, daily) + Bevacizumab (15 mg/kg, q3w) 1:1 Osimertinib (80 mg , daily)

Stratification factors


Sex (female vs. male)
Clinical stage (IIIB-IV vs. recurrence)
EGFR mutation (Del19 deletion vs. L858R)

Primary endpoint: PFS by the BICRs

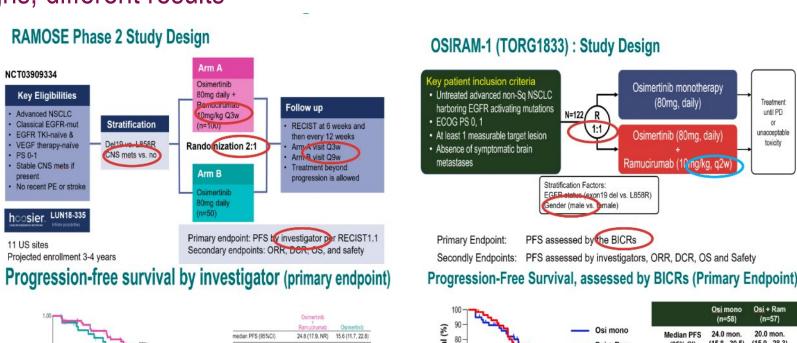
Secondary endpoints: PFS by investigators, Overall response rate Overall survival. Adverse events

Clinical trial information: UMIN000030206

Primary Endpoint: PFS (ITT), assessed by BICRs

Safety summary

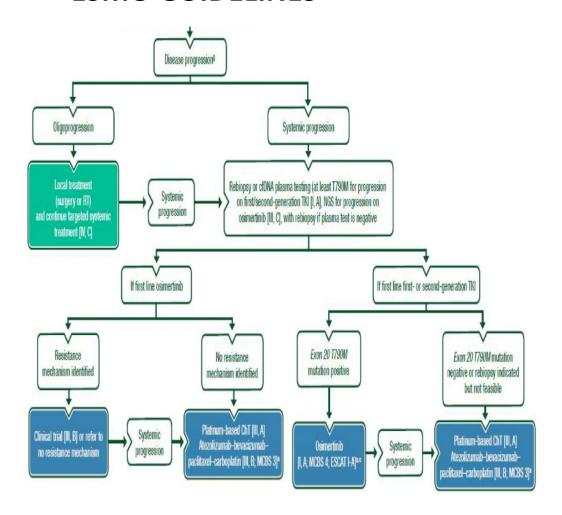
	Osime	ertinib monotherapy (n=60)	Osimertir	nib plus bevacizumab (n=61)
Median duration of osimertinib (weeks)(range)	57.6	(1.4 – 157.9)	94.0	(1.6 – 158.0)
Median duration of bevacizumab (weeks)(range)	-		33.4	(0.1 - 133.9)
Grade 3-5 adverse events (AEs)	29	(48.3%)	34	(55.7%)
Serious adverse events (SAEs)	12	(20.0%)	20	(32.8%)
AEs leading to treatment discontinuation	16	(26.7%)	34	(55.7%)
SAEs leading to treatment discontinuation	3	(5.0%)	7	(11.5%)
AEs leading to dose modification	25	(41.7%)	39	(63.9%)
AEs leading to dose reduction	0	-	3	(4.9%)
AEs leading to treatment-related death	0	-	0	-

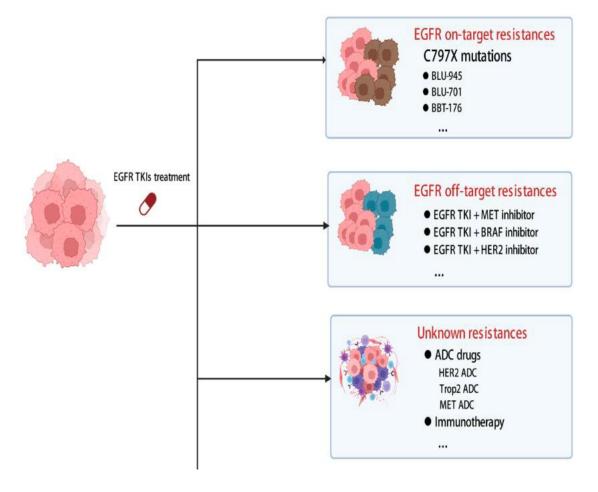

Pilar Garrido. Hospital Uni

Content of the procentation of Copyright and responding of the author. Permission is required for re-use.

OSIMERTINIB + RAMUCIRUMAB

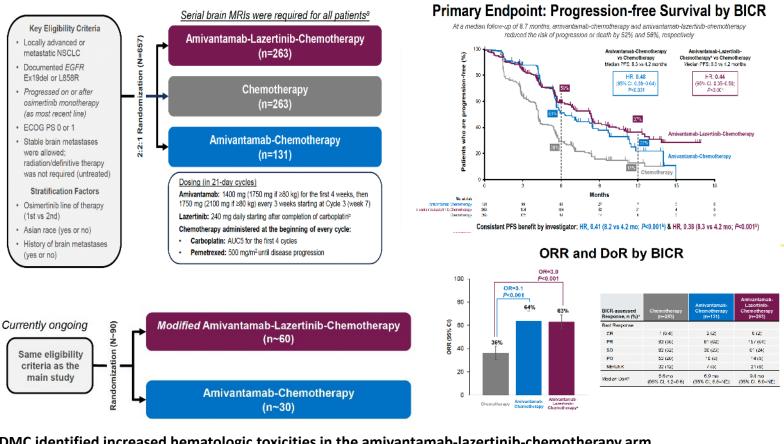
Different designs, different results


Pilar Garrido. Hospital



MANAGEMENT OF PRETREATED IV NSCLC EGFR+

ESMO GUIDELINES



EXPLORING OPTIONS AT DISEASE PROGRESSION

	MET	TKI + EGFR	TKI	Bispecific Ab + EGFR TKI	ADC + EGFR TKI	ADC		CTx + IO	CTx + IO +antiangiogenic
STUDY NAME	ORCHARD	SAVANNAH	INSIGHT2	CHRYSALIS-2 COHORT D	Teliso-V + Osimertinib	TROPION -PanTumor01 (AGA)	U31402-A- U102	CM722 /KN789	ORIENT-31 /IMpower150
Drug	Osimertinib +Savolitinib	Osimertinib +Savolitinib	Osimertinib +Tepotinib	Amivantamab + Lazertinib	Teliso-V + Osimertinib	Datopotomab deruxtecan	Patritumab deruxtecan	IO + CTx	IO + CTx +Anti-angiogenic
n	N=20 (1L Osi)	N=193 (Prev Osi)	N=122 (1L Osi)	N=108 (Prev Osi)	N=25 (Prev Osi)	N=34	N=102 (Prev Osi)	N=294/492	N=158/59
Target	EGFR/MET	EGFR/MET	EGFR/MET	EGFR/MET	EGFR/MET	TROP2	HER3	192	-
Biomarker	NGS	MET IHC 3+ FGCN≥5 MET/CEP7≥2	GCN≥5 Liquid NGS MET/CEP7≥2	72. ⁷	MET IHC	-	7.	.5	
ORR	41%	32%	44%	30%	58%	35%	40%	31%/ 29%	44%/70%
mPFS	. 	5.3 (4.2-5.8)	5.4	5.7 (4.0-8.2)	5-5	-	6.4 (5.3-8.3)	5.6/ 5.6	6.9/ 10.2
mDOR	NR	8.3 (6.9-9.7)	9.7	10.8 (5.5-NR)	E	9.5 (3.3-NR)	7.0 (3.1-NR)	6.7/ 6.3	8.3/ 11.1
Grade ≥ 3 TRAE	30%	45%	28%	9%	44%	26% (@6mg/kg)	32%	45%/ 55.9%	51%/ 64%

MARIPOSA 2: EGFR+ PROGRESSED ON OSIMERTINIB

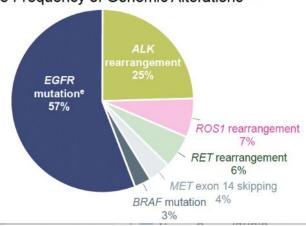
Most common TEAEs (≥25%)	Chemo (n=2		Amivantamab- (n=		Amivantama Chemothera				
by preferred term, n (%)	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3			
Associated with EGFR inhibition									
Paronychia	1 (0.4)	0	48 (37)	3 (2)	133 (51)	11 (4)			
Rash	12 (5)	0	56 (43)	8 (6)	126 (48)	17 (6)			
Stomatitis	21 (9)	0	41 (32)	1 (1)	120 (46)	24 (9)			
Diarrhea	16 (7)	1 (0.4)	18 (14)	1 (1)	68 (26)	10 (4)			
Associated with MET inhibition									
-lypoalbuminemia	21 (9)	1 (0.4)	29 (22)	3 (2)	104 (40)	12 (5)			
Peripheral edema	15 (6)	0	42 (32)	2 (2)	85 (32)	1 (0.4)			
Associated with Chemotherapy									
Neutropenia	101 (42)	52 (21)	74 (57)	59 (45)	181 (69)	144 (55)			
Thrombocytopenia	72 (30)	22 (9)	57 (44)	19 (15)	158 (60)	96 (37)			
Anemia	97 (40)	23 (9)	51 (39)	15 (12)	141 (54)	48 (18)			
eukopenia	68 (28)	23 (9)	37 (28)	26 (20)	106 (40)	71 (27)			
Other									
nfusion-related reaction	1 (0.4)	0	76 (58)	7 (5)	148 (56)	9 (3)			
Vausea	90 (37)	2 (1)	58 (45)	1 (1)	131 (50)	16 (6)			
Constipation	72 (30)	0	50 (38)	1 (1)	96 (37)	3 (1)			
Decreased appetite	51 (21)	3 (1)	40 (31)	0	85 (32)	7 (3)			
/omiting	42 (17)	1 (0.4)	32 (25)	1 (1)	76 (29)	10 (4)			
atigue	47 (19)	4 (2)	36 (28)	4 (3)	69 (26)	15 (6)			
Asthenia	40 (16)	5 (2)	34 (26)	1 (1)	67 (25)	14 (5)			
Alanine aminotransferase increased	67 (28)	10 (4)	26 (20)	7 (5)	55 (21)	14 (5)			
AESIs by grouped term, n (%)									
Rashb	30 (12)	0	92 (71)	13 (10)	197 (75)	40 (15)			
/TE ^c	11 (5)	7 (3)	13 (10)	3 (2)	58 (22)	17 (6)			
LD	0	0	2 (2)	1 (1)	7 (3)	5 (2)			
Es leading to death	3	(1)	3	(2)	14	(5)			
Any AE leading to treatment:									
Interruptions of any agent	81	(33)	84	(65)	202	(77)			
Reductions of any agent	37	(15)	53	(41)	171 (65)				
Discontinuations of any agent	9	(4)	24	(18)	90 (34)				

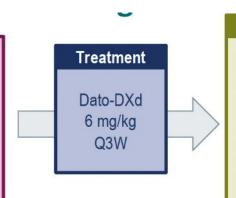
IDMC identified increased hematologic toxicities in the amivantamab-lazertinib-chemotherapy arm

- The amivantamab-lazertinib-chemotherapy regimen was modified to start lazertinib after carboplatin completion
- An extension cohort was started, enrolling new patients, to evaluate the safety/efficacy of the modified regimen

Passaro A. ESMO congress 2023; Ann Oncol 2023

TROPION LUNG 05


Screening

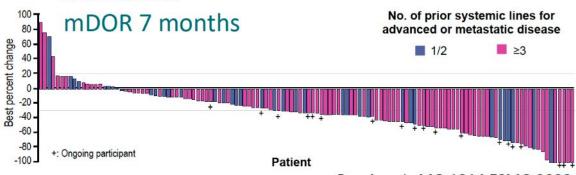

Key inclusion criteria

- Stage IIIB, IIIC, or IV NSCLC
- Presence of ≥1 actionable genomic alteration (EGFR, ALK, ROS1, NTRK, BRAF, MET exon 14 skipping, or RET)
- ECOG PS of 0 or 1
- ≥1 line of targeted therapy
- 1 or 2 prior cytotoxic agent–containing therapies in the metastatic setting
- Radiographic disease progression after targeted therapy

≥3 prior lines of therapy for adv/met disease ≥2 prior lines of targeted therapies for indicated genomic alteration 98 (72) 82 (60)

Relative Frequency of Genomic Alterations^{b-d}

Endpoints^a


Primary: ORR by BICR Secondary:

- By BICR and investigator: DOR, DCR, CBR, PFS, TTR
- By investigator: ORR
- · OS, safety, PK, immunogenicity

EGFRm+:

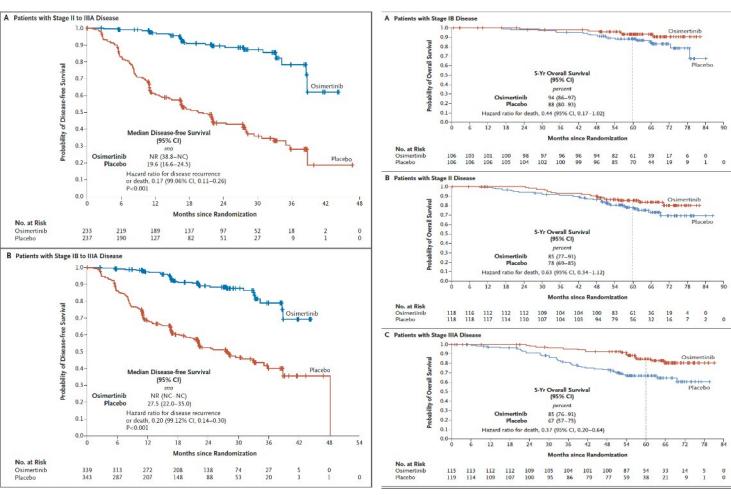
ORR 43.5% (49% in pretreated with osi)

DCR 82.1%

Paz-Ares L, MO 1314 ESMO 2023

EARLY STAGE SETTING

WE ALSO NEED TESTING IN EARLY STAGES!!

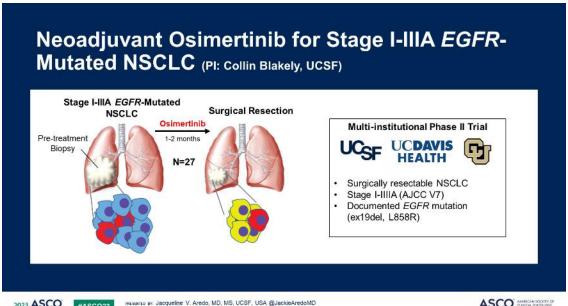

PHASE III ADAURA STUDY DESIGN

Patients with completely resected stage* IB, II, IIIA NSCLC, with or without Planned treatment duration: 3 years adjuvant chemotherapy Osimertinib 80 ma Treatment continues until: Key inclusion criteria: Disease recurrence ≥18 years (Japan / Taiwan: ≥20) Treatment completed WHO performance status 0 / 1 Stratification by: Randomisation Discontinuation criterion met Confirmed primary non-squamous NSCLC stage (IB vs II vs IIIA) EGFRm (Ex19del vs L858R) Ex19del / L858R‡ (N=682) Follow up: Brain imaging, if not completed pre-operatively race (Asian vs non-Asian) Until recurrence: Week 12 and 24. Complete resection with negative margins⁵ then every 24 weeks to 5 years. Max. interval between surgery and randomisation: then yearly 10 weeks without adjuvant chemotherapy After recurrence: every 24 weeks for 26 weeks with adjuvant chemotherapy 5 years, then yearly

Endpoints

- Primary endpoint: DFS by investigator assessment in stage II / IIIA patients, designed for superiority under the assumed DFS HR of 0.70
- Key secondary endpoints: DFS in the overall population¹, DFS at 2, 3, 4, and 5 years, OS, safety, health-related quality of life
- Pre-specified exploratory endpoints: Patterns of recurrence, time to CNS disease recurrence or death (CNS DFS)

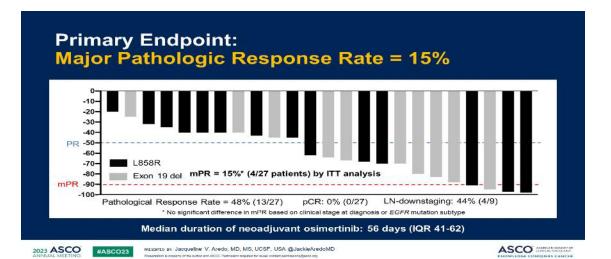
SIGNIFICANT BENEFIT OVER PLACEBO IN DFS AND OS

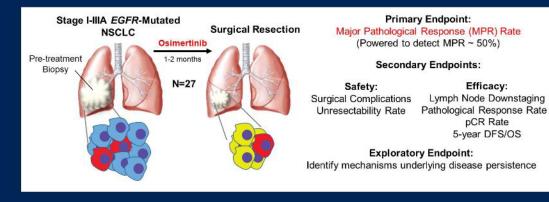

Wu, YL, NEJM 2020

Tsuboi M, NEJM 2023

NEOADJUVANT SCENARIO FOR EGFR +

Study	Phase	Stage	N	Therapy	Primary endpoint
NeoADAURA (NCT04351555)	III	II-IIIB (N2)	328	neoadjuvant chemo + placebo vs chemo + osimertinib vs osimertinib 9 wks → sx → investigator choice (osimertinib x 3yrs)	MPR
ANSWER (NCT04455594)	II	IIIA N2	168	neoadjuvant almonertinib vs investigator choice (erlotinib or chemo)	ORR
NCT04201756	II	III	47	neoadjuvant afatinib x 16wks → sx → afatinib x 1 yr	ORR
Neolpower (NCT05104788)	II	II-IIIB	27	neoadjuvant icotinib + chemo x 2 cycles → sx	MPR
NCT03749213	II	IIIA N2	36	neoadjuvant icotinib x 8wks → sx → icotinib x 2 yrs	ORR


Neoadjuvant Osimertinib



Primary Endpoint: Major Pathological Response Rate

PRESENTED IN: Jacqueline V. Aredo, MD, MS, UCSF, USA @JackieAredoMD

Safety

Surgical Resectability

- 24 of 27 patients (89%) completed R0 surgical resection
- · 3 of 27 (11%) were converted to definitive concurrent chemoradiotherapy, 1 (3.7%) due to disease progression

Adverse Events

SAEs: 3 patients (11%) Pulmonary Embolism. Atrial Fibrillation, Dyspnea

Perioperative complications:

9 patients (38%) total, all grade 1-2 6 patients (25%) with grade 2 post-op atrial fibrillation, unrelated to osimertinib

Surgical complications:

None

TAKE- HOME MESSAGES

- There are new first-line treatment options for patients with aNSCLC EGFR mut tumors (FLAURA2, MARIPOSA) with better outcomes (PFS) but also higher toxicity.
- Additional data (biomarkers, PRO, PRE) and OS will help us to prioritize
- In the second line scenario we still need better options to improve long term survival
- In early stages, neoadjuvant trials largely awaited
- In all cases, treatment decisions should always be individualized to meet the specific needs and goals of each patient.

Thanks!!!!!

pilargarridol@gmail.com

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

