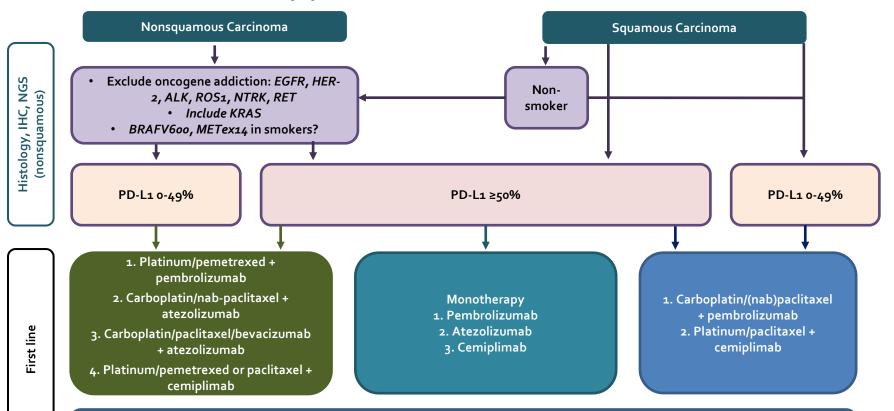


Focus on controversial subgroups for immunotherapy in non-AGA NSCLC

Pr Solange Peters, MD-PhD Lausanne University Hospital & Ludwig Institute Switzerland

DISCLOSURE INFORMATION

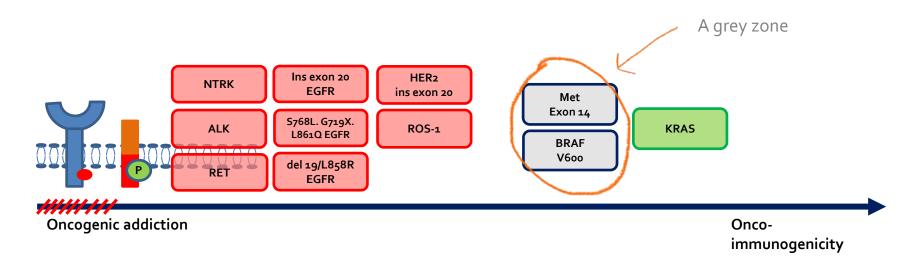
I have received education grants, provided consultation, attended advisory boards and/or provided lectures for the following organizations, from whom I have received honoraria (all fees to institution):


Consultation / Advisory role: AbbVie, AiCME, Amgen, Arcus, AstraZeneca, Bayer, Beigene, BerGenBio, Biocartis, BioInvent, Blueprint Medicines, Boehringer Ingelheim, Bristol-Myers Squibb, Clovis, Daiichi Sankyo, Debiopharm, ecancer, Eli Lilly, Elsevier, F-Star, Fishawack, Foundation Medicine, Genzyme, Gilead, GSK, Illumina, Imedex, IQVIA, Incyte, Ipsen, iTeos, Janssen, Medscape, Medtoday, Merck Sharp and Dohme, Merck Serono, Merrimack, Mirati, Novartis, Novocure, OncologyEducation, Pharma Mar, Phosplatin Therapeutics, PER, Peerview, Pfizer, Regeneron, RMEI, Roche/Genentech, RTP, Sanofi, Seattle Genetics, Takeda, Vaccibody.

Board of Director role: Galenica SA

Talk in a company's organized public event: AiCME, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, ecancer, Eli Lilly, Foundation Medicine, GSK, Illumina, Imedex, Ipsen, Medscape, Merck Sharp and Dohme, Mirati, Novartis, PER, Peerview, Pfizer, Roche/Genentech, RTP, Sanofi, Takeda.

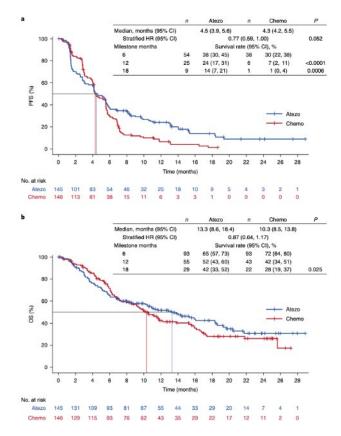
Receipt of grants/research supports: Principal investigator in trials (institutional financial support for clinical trials) sponsored by Amgen, AstraZeneca, Beigene, Bristol-Myers Squibb, GSK, Merck Sharp and Dohme, Roche/Genentech.


Immunotherapy is a standard for advanced NSCLC

Ipilimumab + nivolumab (PD-L1+?) Ipilimumab + nivolumab + chemotherapy (2 cycles) according to histology Tremelimumab+ durvalumab + chemotherapy according to histology

WHICH BIOMARKERS ARE REQUIRED FOR TREATMENT DECISION-MAKING PRIOR TO INITIATING IO-BASED TREATMENT ?

Targetable biomarkers in NSCLC & IO



Tumor heterogeneity, a gradient from oncogenic addiction to immunogenicity

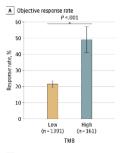
TMB

WHICH BIOMARKERS ARE REQUIRED FOR TREATMENT DECISION-MAKING PRIOR TO INITIATING IO-BASED TREATMENT ?

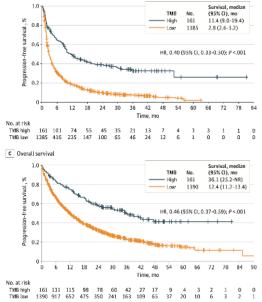
Where are we with TMB?

nature medicine ARTICLES https://doi.org/10.1038/s41591-022-01933-w

OPEN


Atezolizumab versus chemotherapy in advanced or metastatic NSCLC with high blood-based tumor mutational burden: primary analysis of BFAST cohort C randomized phase 3 trial

- The bTMB CTA ≥16 cutoff was determined to be equivalent to a F1L CDx value of 13.6 mut/Mb.
- PFS using F1L CDx (including indels) longer with atezolizumab, HR of 0.71 (95% CI: 0.52, 0.96; descriptive P=0.028).
- The optimal HR of 0.56 was achieved at bTMB ≥20 mut/Mb by F1L CDx.


Peters, Nat Med 2022

The future is accurate neoantigen identification (HLA-matched) and specific T-cell response assessment

A very high threshold needed?

B Progression-free survival

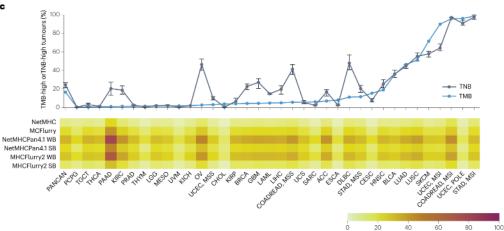
JAMA Oncology | Original Investigation

Association of High Tumor Mutation Burden in Non–Small Cell Lung Cancers With Increased Immune Infiltration and Improved Clinical Outcomes of PD-L1 Blockade Across PD-L1 Expression Levels

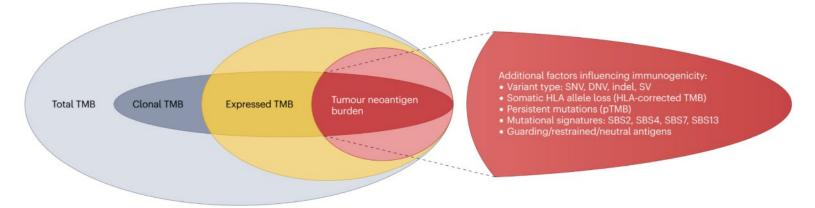
- Pooled analysis of the MSKCC, DFCI, and SU₂C/Mark Foundation cohorts.
- Normalizing IMPACT, DFCI Oncopanel, and WES, with whigh TMB being TMB z score of greater than 1.16
- Patients with NSCLC and a high harmonized TMB z score of 1.16 or higher (corresponding to ≥19.0 for MSKCC, ≥19.3 for DFCI cohort, and ≥16.0 mutations per Mb for the SU2C) had significantly better outcomes (RR, PFS & OS)

nature reviews clinical oncology

Review article


https://doi.org/10.1038/s41571-024-00932-9

Check for updates


С

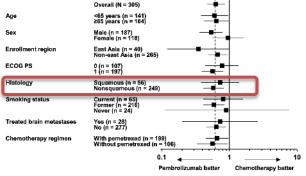
Tumour mutational burden: clinical utility, challenges and emerging improvements

Jan Budezies @ 12.310 ..., Daniel Kazdal @ 12.330, Michael Menzel @ 1.3, Susanne Beck^{1,3}, Klaus Kluck @ 1.3, Christian Altbürger @13, Constantin Schwab¹³, Michael Allgäuer¹³, Avsel Ahadova⁴⁸, Matthias Kloor⁴³, Peter Schirmacher¹³, Solange Peters⁶, Alwin Krämer¹³, Petros Christopoulos²⁹ & Albrecht Stenzinger^{12,3}

Percentage of mutations presented by MHC class I

Histological subtype

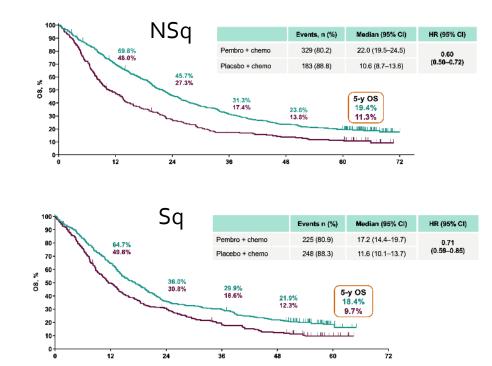
WHICH BIOMARKERS ARE REQUIRED FOR TREATMENT DECISION-MAKING PRIOR TO INITIATING IO-BASED TREATMENT ?


Histology and anti-PD1 activity

Subgroup	Events/Pts	Hazard Ra	utio (95% CI)
Squamous	343/492		0.75 (0.60-0.93)
Nonsquamous	466/782		0.86 (0.72-1.03)
Smoking statu	s		
Never	163/282		- 1.00 (0.73-1.37)
Former	471/721		0.71 (0.59-0.86)
Current	175/271		0.95 (0.70-1.29)
Chemotherapy r	egimen		
Pem + Carbo	371/636		0.87 (0.71-1.07)
Pac + Carbo	438/638		0.74 (0.61-0.90)
Disease status			
Metastatic	711/1114		0.83 (0.71-0.96)
Locally adv.	98/160		0.74 (0.49-1.13)
	0.1	0.5 1	5 10
	Pembroli Bett		Chemotherapy Better

KEYNOTE-042 : PD-L1 pos

		Cemiplimab + chemo No. OS events/ no. patients	Placebo + chemo No. OS events no. patients	Hazerd ratio (95% CI)	
All patients		132/312	82/154	⊢ ●1	0.71 (0.53-0.93
Age group	<65 years	72/184	53/94	1 0 1	0.57 (0.40-0.81
	≥65 years	60/128	29/60	· •	0.88 (0.56-1.37
Sex	Male	113/268	75/123	⊢ ∎i	0.55 (0.41-0.74
	Female	19/44	7/31	·	2.11 (0.89-5.03
Race	White	116/267	76/138	I	0.67 (0.50-0.89
	Man white	40/46	0/40		0.70 (0.04 0.00
Histology	Squamous	57/133	39/67		0.56 (0.37-0.84
	Non-squamous	75/179	43/87		0.79 (0.54-1.14
PD-L1 level	<1%	54/95	27/44		1.01 (0.63-1.60
	1-49%	40/114	31/61	→	0.52 (0.32-0.83
	≥50%	38/103	24/49		0.61 (0.37-1.02
ECOG PS	0	11/51	6/18	• • • • • • • • • • • • • • • • • • •	0.55 (0.20-1.49
	1	119/259	75/134	→ ●→	0.69 (0.52-0.92
Region	Europe	118/270	76/138	⊢ ●→	0.67 (0.50-0.90
	Asia	14/42	6/16	• • •	0.72 (0.27-1.88
Brain met	Yes	11/24	5/7	• •	0.42 (0.14-1.26
	No	121/288	77/147		0.68 (0.51-0.90
Cancer stage	Locally advanced	16/45	13/24		0.54 (0.25-1.15
	Metastatic	116/267	69/130	I	0.69 (0.51-0.93
Smoking	Smokers	115/269	75/130		0.61 (0.46-0.82
	Never smokers	17/43	7/24	• • • • • • • • • • • • • • • • • • •	1.28 (0.53-3.08
					10
				0.1 1	10
				<	►
				Cemiplimab + chemo better Placebo + chemo bette	er 🛛


EMPOWER-Lung 1: PD-L1 high

KEYNOTE024 : PD-L1 high

EMPOWER-Lung 3 and KEYNOTE 189/407

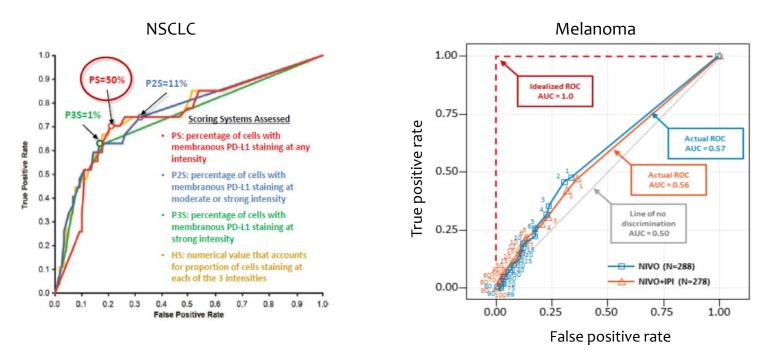
				OS	
		Cemiplimab + chemo	Placebo + chemo	Hazard Ratio (95% CI)	
		# OS events/ # patients	# OS events/ # patients		
All patients		132/312	82/154		0.71 (0.53-0.93)
Age group	<65 years ≥65 years	72/184 60/128	53/94 29/60		0.57 (0.40-0.81) 0.88 (0.56-1.37)
Gender	Male Female	113/268 19/44	75/123 7/31		0.55 (0.41-0.74) 2.11 (0.89-5.03)
Race	White Non-white	116/267 16/45	76/138 6/16		0.67 (0.50-0.89) 0.79 (0.31-2.02)
Histology	Squamous Non-squamous	57/133 75/179	39/67 43/87		0.56 (0.37–0.84) 0.79 (0.54–1.14)
PD-L1 level	<1% 1–49% ≥50%	54/95 40/114 38/103	27/44 31/61 24/49		1.01 (0.63–1.60) 0.52 (0.32–0.83) 0.61 (0.37–1.02)
ECOG PS	0 1	11/51 119/259	6/18 75/134		0.55 (0.20-1.49) 0.69 (0.52-0.92)
Region	Europe Asia	118/270 14/42	76/138 6/16		0.67 (0.50-0.90) 0.72 (0.27-1.88)
Brain met	Yes No	11/24 121/288	5/7 H 77/147		0.42 (0.14–1.26) 0.68 (0.51–0.90)
Cancer stage	Locally advanced Metastatic	16/45 116/267	13/24 69/130		0.54 (0.25–1.15) 0.69 (0.51–0.93)
Smoking	Smokers Never smokers	115/269 17/43	75/130 7/24		0.61 (0.46–0.82) 1.28 (0.53–3.08)
			0.1	11	10
			Cemiplima	b + chemo better Placebo + ch	emo better

CheckMate 227 (PD-L1+) and 9LA

	Median OS	6, months		
Subgroup	NIVO + IPI n = 396	Chemo n = 397	Unstratified HR	Unstratified HR (95% CI)
Overall (n = 793)	17.1	14.9	0.79 ^a	
< 65 years (n = 406)	19.7	16.0	0.70	
65 to <75 years (n = 306)	16.6	14.5	0.91	
≥ 75 years (n = 81)	13.5	11.4	0.92	
Male (n = 515)	18.7	14.0	0.75	_
Female (n = 278)	16.6	16.2	0.91	e
ECOG PS 0 (n = 269)	24.4	17.5	0.66	_ —
ECOG PS 1 (n = 519)	14.6	12.7	0.89	_ _
Never smoker (n = 107)	15.2	19.6	1.23	•
Smoker (n = 674)	18.1	14 1	0.77	
Squamous (n = 236)	14.8	9.2	0.69	
Non-squamous (n = 557)	19.4	17.2	0.85	
Liver metastases (n = 150)	9.0	11.9	1.05	
No liver metastases (n = 637)	19.9	16.3	0.76	
Bone metastases (n = 208)	13.4	10.0	0.75	—•—+
No bone metastases (n = 585)	18.8	16.7	0.81	_ _
CNS metastases (n = 81)	16.8	13.4	0.68	•
No CNS metastases (n = 712)	17.1	14.9	0.82	_

0,5	1	1,5
NIVO + IPI	\leftrightarrow	Chemo

	Median U:	», mo		
	NIVO + IPI + chemo	Chemo		
Subgroup	n = 361	n = 358	Unstratified HR	Unstratified HR (95% CI)
All randomized (N = 719)	15.8	11.0	0.73	_
< 65 years (n = 354)	15.9	10.7	0.64	
≥ 65 to < 75 years (n = 295)	19.0	11.9	0.78	
≥ 75 years (n = 70)	8.5	11.5	1.04	
Male (n = 504)	14.2	9.8	0.72	
Female (n = 215)	22.2	15.9	0.75	
ECOG PS 0 (n = 225)	27.1	14.1	0.54	
ECOG PS 1 (n = 492)	13.6	9.7	0.83	
Never smoker (n = 98)	14.1	14.4	1.08	•
Smaller (n - 621)	44.7	40.4	0.49	i i
SQ (n = 227)	14.5	9.1	0.63	
NSQ (n = 492)	17.8	12.0	0.78	
Eiver metastases (II - 194)	10.2	0,1	0.03	
No liver metastases (n = 565)	19.3	12.4	0.72	
Bone metastases (n = 207)	11.9	8.3	0.73	
No bone metastases (n = 512)	19.7	12.4	0.74	
CNS metastases (n = 123)	19.9	7.9	0.47	
No CNS metastases (n = 596)	15.6	11.B	0.79	
PD-L1 < 1% (n = 264)	17.7	9,8	0.67	— •—
PD-L1 ≥ 1% (n = 407)	15.8	10.9	0.70	_ —
PD-L1 1-49% (n = 233)	15.2	10.4	0.70	
PD-L1 ≥ 50% (n = 174)	18.9	12.9	0.67	
			D 2	s as 1 2

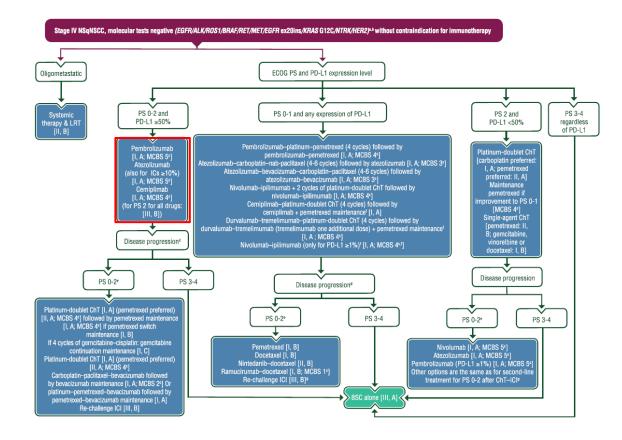

POSEIDON: the outlier?

	OS				OS		
	D+CT	D+T+CT	CT		D+CT	D+T+CT	СТ
Events, n/N (%)	154/209 (73.7)	145/214 (67.8)	173/214 (80.8)	Events, n/N (%)	109/128 (85.2)	106/124 (85.5)	111/122 (91.0)
mOS, months (95% CI)	14.8 (11.8-18.3)	17.2 (14.9-21.8)	13.1 (10.6-15.1)	mOS, months (95% CI)	11.5 (9.4-14.0)	10.4 (8.4-12.7)	10.5 (8.0-11.7)
HR* (95% CI)	0.82 (0.66-1.03)	0.70 (0.56-0.87)	-	HR* (95% CI)	0.84 (0.64-1.10)	0.88 (0.68-1.16)	-
1.0 0.8 0.6 0.6 0.4 0.2 0.2	Non-s	squamous	╋╬ _{╋╫╫╫──┼╴┲┲} ╫╋ <u>╫╫┼╶╫╶╋╺</u> ┿╅╫┈╫┺┿┺ _{╋┿┿}	1.0 0.8 0.6 0.4 0.2 0.0	Squam	20.6% 18.1%	
0 3 6	9 12 15 18 21	24 27 30 33	36 39 42 45	0 3 6	9 12 15 18 21	24 27 30 33	36 39 42 45
No.atrisk T	ime from random	ization (months)		No. at risk	Time from random	ization (months)	
D+CT 209 185 152 D+T+CT 214 191 169	132 116 98 90 82	72 63 59 38	25 11 4 0 31 12 6 0	D+CT 128 111 95 D+T+CT 124 107 87	80 60 44 36 30	25 22 22 13 22 18 16 14	8 4 1 0

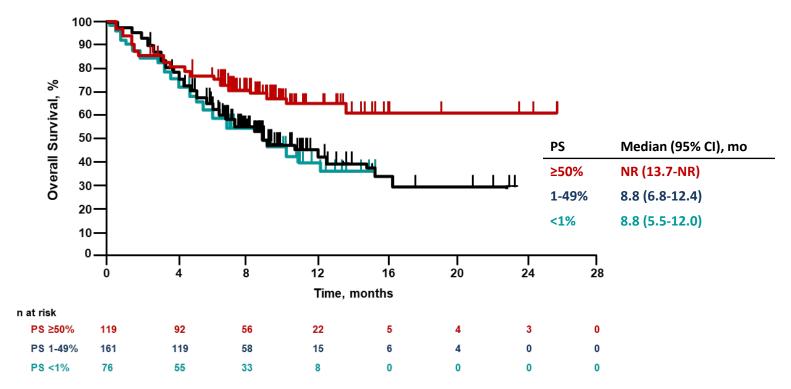
PD-L1

WHICH BIOMARKERS ARE REQUIRED FOR TREATMENT DECISION-MAKING PRIOR TO INITIATING IO-BASED TREATMENT ?

Performance of PD-L1 is variable across cancer types

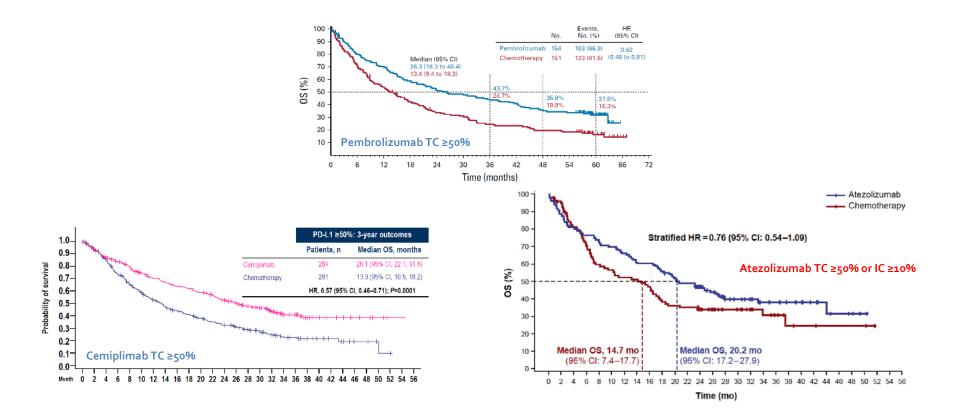

- A cut off value of 50% has been defined in NSCLC
- The shoulder of the ROC curve is taken to be the point that achieves the best true positive and the best false positive rate

	Trial	N (IO/chemo) PD-L1≥50%	Inclusion	Primary endpoint	PD-L1 Ab	Cross- over*
Pembrolizumab ¹	KN-024	154/151	PD-L1≥50%, no EGFR, ALK	PFS (OS key 2°)	22C3	66%
Pembrolizumab ¹	KN-042	299/300	PD-L1≥1%, no EGFR, ALK	OS PD-L1≥50%, PD- L1≥20%, PD-L1≥1%	22C3	NA
Cemiplimab ²	EMPOWER- Lung 1	283/280 ^{&}	PD-L1 ≥ 50% <u>No never-smokers</u> , EGFR, ALK, ROS1	OS, PFS	22C3	74%
Atezolizumab ³	Impower 110	107/98	PD-L1 ≥ 50%, IC ≥ 10%, No EGFR, ALK	OS, PD-L1 ≥ 50%, PD-L1 ≥ 5%, PD-L1 ≥ 1%,	SP142	34.7% (NPT)
Nivolumab ⁴	CheckMate 026	88/126	PD-L1≥1% No EGFR, ALK	PFS PD-L1 ≥ 5% (OS 2°)	28-8	60.8%
Durvalumab ⁵	MYSTIC	118/107	any PDL1 No EGFR, ALK	OS, PFS PD-L1 TC ≥25% (modified endpoint)	SP263	NA
Avelumab ⁶	Javelin 100	281/345 (qw+q2w)	PD-L1≥1% No EGFR, ALK	OS, PFS PD-L1 ≥ 80% (comparable to ≥50% for 22C3) q2w, qw	73-10	31-35%

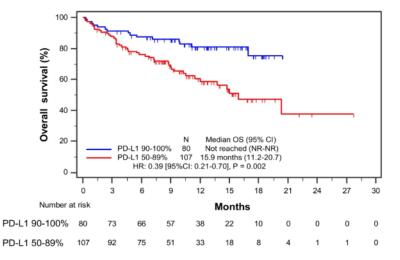

¹Brahmer et al, ESMO 2020, Reck et al, JCO 2021;39:2339-2349. Cho et al, JTO 2021;16(35):S225.²Sezer et al, Lancet 2021;39:592-604. Özgüroğlu et al, Annal of Onc 2022; 33:57:S1421.³Jassem et al, JTO 2021;16:1872-82 (updated exploratory). Spigel et al, Annal Onc 2019;30(5):v915. Herbst et al, NEJM 2020; 383:1328-1339. ⁴Carbone et al, NEJM 2017;376:2415-26. ⁵Rivzi et al, JAMA Oncol. 2020;6(5):661-674. ⁶Reck et al, WCLC 2022;OA15.03. *Chemo>IO in high PD-L1. & Partial retesting of PD-L1. NPT:non-protocol treatment.

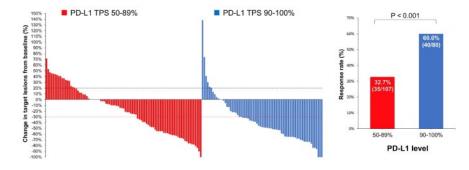
PD-L1 High

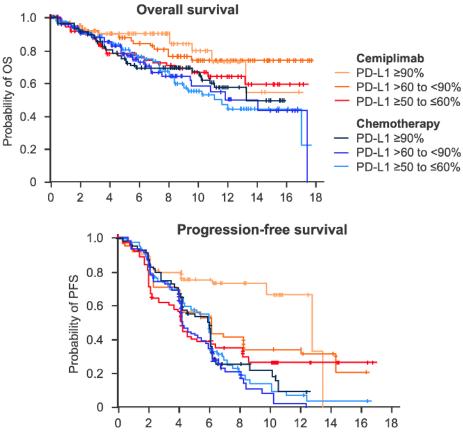
WHICH BIOMARKERS ARE REQUIRED FOR TREATMENT DECISION-MAKING PRIOR TO INITIATING IO-BASED TREATMENT ?



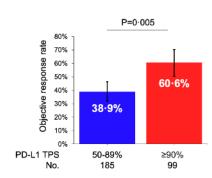
OS by PD-L1 Expression Pembrolizumab KEYNOTE-001

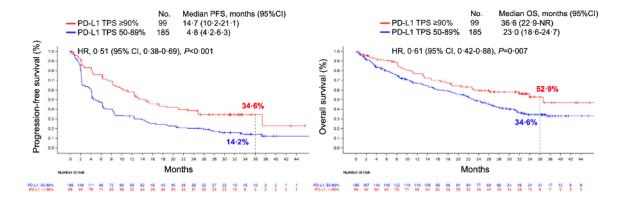


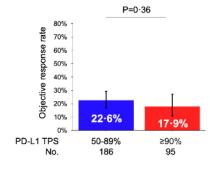

Garon EB et al. N Engl J Med. 2015;372(18):1700-1709.

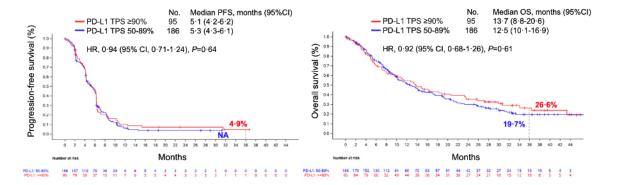

The 50% TC cut-off is validated first line in NSCLC

Clinical continuum: anti PD(L)-1 in very high PD-L1



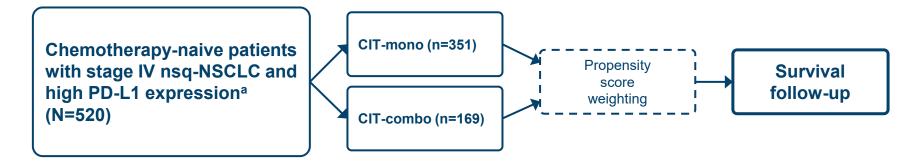




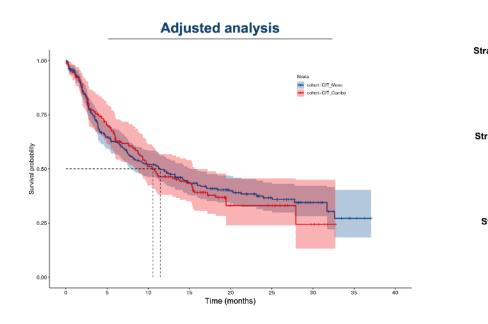

Aguilar, Ann Oncol 2019; Kilickap, WCLC 2020

3 years FU for cemiplimab in EMPOWER-Lung 1

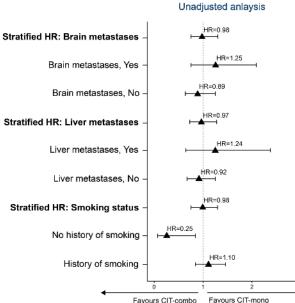
Ricciuti et al, JTO CRR 2024 in press



ORIGINAL ARTICLE

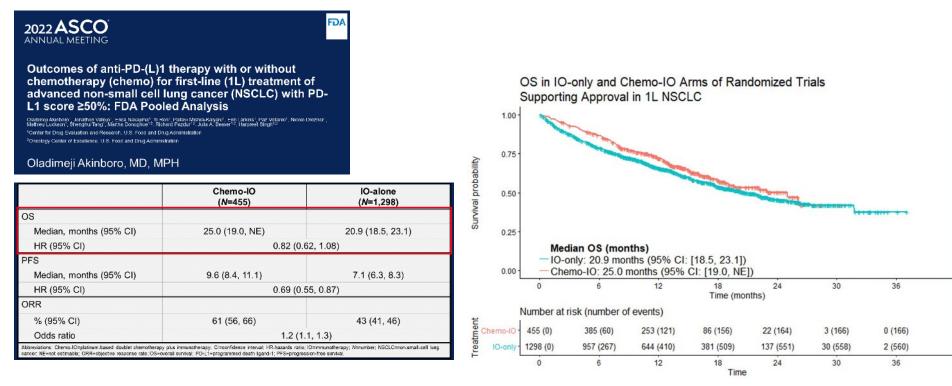

Effectiveness of PD-(L)1 inhibitors alone or in combination with platinumdoublet chemotherapy in first-line (1L) non-squamous non-small-cell lung cancer (Nsq-NSCLC) with PD-L1-high expression using real-world data

M. Pérol¹⁺, E. Felip²⁺, U. Dafni^{3,4}, L. Polito⁵, N. Pal⁶, Z. Tsourtl⁴, T. G. N. Ton⁶, D. Merritt⁷, S. Morris⁷, R. Stahel⁸⁺ & S. Peters^{9†}

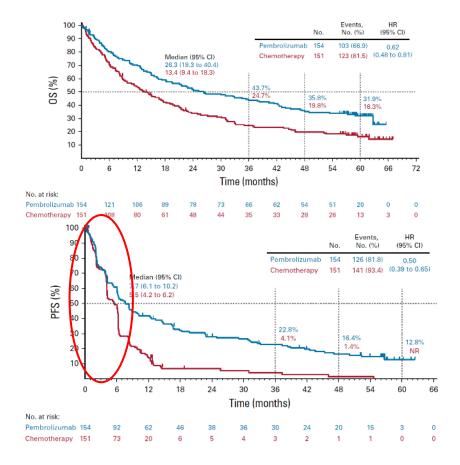

- Primary outcome was overall survival (OS) among treatment initiators
- Subgroup analyses were conducted to evaluate the influence of brain metastases, liver metastases and smoking history

Chemotherapy might not be needed in PD-L1 ≥50%

CIT-combo vs CIT-mono (reference)	Hazard ratio (95% CI)	<i>P</i> value
Unadjusted analysis	1.01 (0.78, 1.05)	0.957
Adjusted analysis	1.04 (0.78, 1.37)	0.811

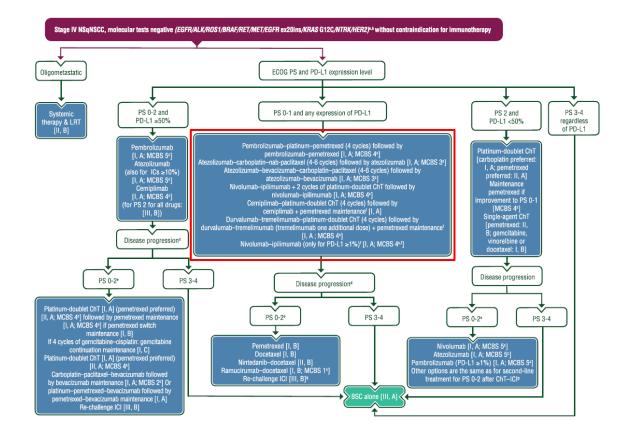

Group	Patients	Events, n (%)	Median rwPFS (95% CI), mo
CIT-mono	351	170 (48)	11.5 (8.12, 15.01)
CIT-combo	169	87 (52)	10.8 (8.97, 15.31)

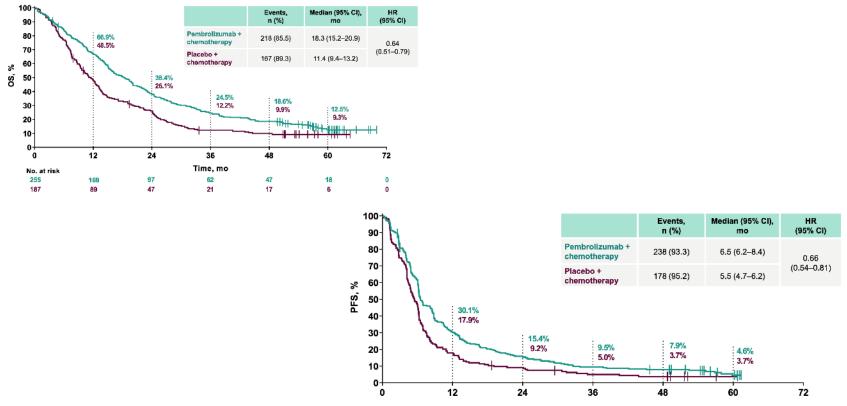
Overall survival


^a Proportional hazards assumption is violated in the unadjusted model (Schoenfeld residual test).

The propensity score model included metastatic type, age, race, ECOG performance status score, brain metastases, smoking status, sex, liver metastases, time to 1L treatment start.

What does RWD tell us about real & adequate expectations? FDA analysis


KEYNOTE-024 : A word of caution?


- 1/3 of patients experience progressive disease at first assessment
- A surprisingly small proportion of patients receive second-line therapy
 - RWD 25%
 - KEYNOTE-024: 53%
 - KEYNOTE-042: 46%
 - EMPOWER-Lung 1: 32%

PD-L1 negative

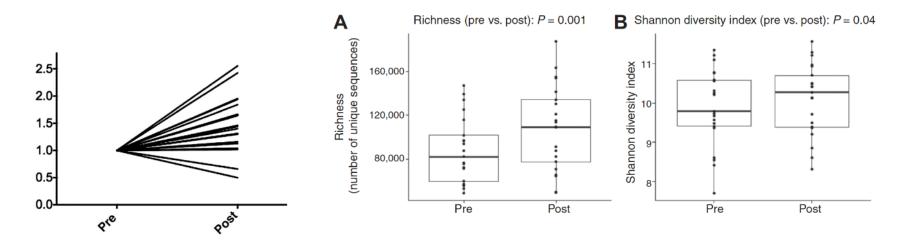
WHICH BIOMARKERS ARE REQUIRED FOR TREATMENT DECISION-MAKING PRIOR TO INITIATING IO-BASED TREATMENT ?

Pooled pembro/chemo data in PD-L1 negative NSCLC

KN189 Global, March 8, 2022; KN189 Japan Extension, February 7, 2023; KN407 Global, February 23, 2022; KN407 China Extension, February 10, 2023. Gadgeel, WCLC 2023

Cancer Therapy: Clinical

CTLA4 Blockade Broadens the Peripheral T-Cell Receptor Repertoire


Lidia Robert¹, Jennifer Tsoi⁷, Xiaoyan Wang^{1,8}, Ryan Emerson^{7,8}, Blanca Homet^{1,9}, Thinle Chodon¹, Stephen Mok^{1,2}, Rong Rong Huang⁴, Alistair J. Cochran⁴, Begoña Comin-Anduix^{5,6}, Richard C. Koya^{5,6}, Thomas G. Graeber^{2,6}, Harlan Robins^{7,8}, and Antoni Ribas^{1,2,5,6}

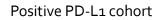
Clinical Cancer

Research

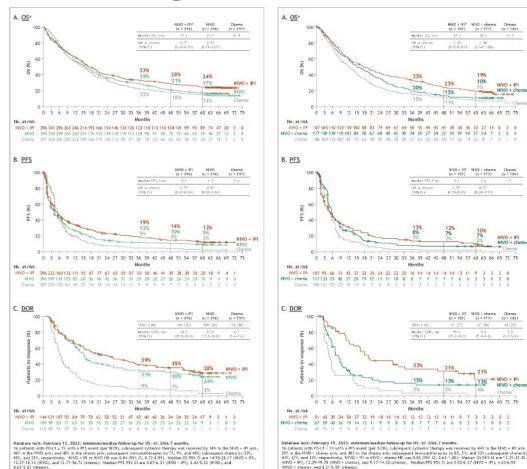
Anti-CTLA-4 therapy broadens the melanoma-reactive CD8⁺ T cell response Pia Kvistborg *et al. Sci Transl Med* 6, 254ra128 (2014); DOI: 10.1126/scitransImed.3008918

Normalized TCR V-beta CDR₃ repertoire diversity.

Analysis comparing baseline and posttremelimumab PBMC samples, Richness and Shannon index for diversity. Differences in richness for total number of unique productive sequences (P . 0.001;A) and Shannon index for diversity of the repertoire (P . 0.04; B).


EMPOWER-Lung 3 : what bout negative PD-L1

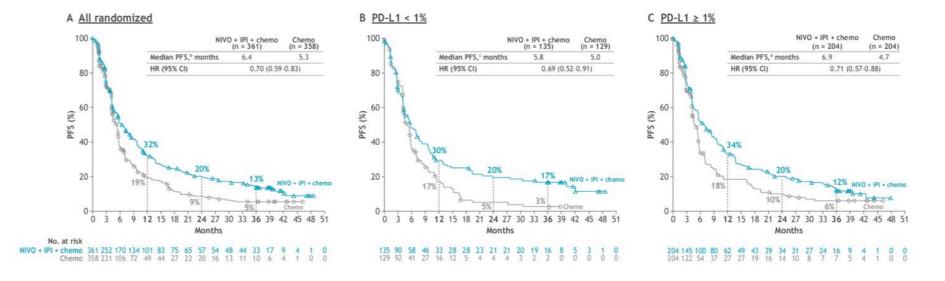
		Cemiplimab + chemo	Placebo + chemo	OS Hazard Ratio (95% Cl)		Cemiplimab + chemo	Placebo + chemo	PF	S atio (95% CI)
		# OS events/ # patients	# OS events/ # patients			# PFS events/ # patients	# PFS events/ # patients		(13 % CI)
All patients		132/312	82/154		0.71 (0.53-0.93)	204/312	122/154	H++	0.56 (0.44-0.70)
Age group	<65 years ≥65 years	72/184 60/128	53/94 29/60		0.57 (0.40–0.81) 0.88 (0.56–1.37)	114/184 90/128	77/94 45/60		0.53 (0.39–0.71) 0.56 (0.39–0.81)
Gender	Male Female	113/268 19/44	75/123 7/31		0.55 (0.41–0.74) → 2.11 (0.89–5.03)	176/268 28/44	103/123 19/31		0.48 (0.37–0.61)
Race	White Non-white	116/267 16/45	76/138 6/16		0.67 (0.50 Feb 24, 20 0.79 (0.31 Kristi Rosa	23			
Histology	Squamous Non-squamous	57/133 75/179	39/67 43/87		0.56 (0.37				
PD-L1 level	<1% 1–49% ≥50%	54/95 40/114 38/103	27/44 31/61 24/49		0.61 (0.37 compination				ended the approval of cemiplimab-rwlc in anced non—small cell lung cancer with PD-L1
ECUG F3	0	11/51 119/259	0/18 75/134		0.55 (0.20		ha Fruger oon Madiain oo	Annual Committee for b	la disinal Products for Liveran Liss has
Region	Europe Asia	118/270 14/42	76/138 6/16		0.67 (0.50 0.72 (0.27	re	commended the approv	val of cemiplimab-rwlc (Lib	ledicinal Products for Human Use has stayo) in combination with platinum-bas
Brain met	Yes No	11/24 121/288	5/7 🛏 77/147		0.42 (0.14 0.68 (0.51				nts with advanced non–small cell lung her in the European Union. ¹
Cancer stage	Locally advanced Metastatic	16/45 116/267	13/24 69/130		0.54 (0.25 0.69 (0.51		he approval would inclu	de patients who are not ca	ndidates to receive definitive
Smoking	Smokers Never smokers	115/269 17/43	75/130 7/24		0.61 (0.46 1.28 (0.53		nemoradiation, whose to GFR, ALK, or ROS1 aber		cally advanced, and who do not harbor
			0.1	1 1	10				e 3 Study 16113/EMPOWER-Lung 3 trial e trial, 327 had tumors with a PD-L1
			Cemiplimab	+ chemo better Placebo + chen	no better expression	•		•	217) resulted in a median overall surviva


0.69).

(OS) of 22 months vs 13 months with chemotherapy alone (n = 110) at a median follow-up of 16 months; this translated to a 45% relative reduction in the risk of death (HR, 0.55; 95% Cl, 0.39-0.78). With a longer median follow-up of 28 months, cemiplimab/chemotherapy continued to showcase a meaningful survival benefit in this group (HR, 0.51; 95% Cl, 0.38-

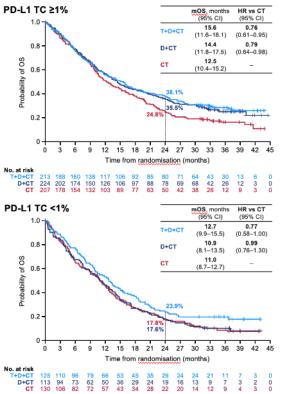
CheckMate 227: adding a CTLA-4 is active in negative PD-L1

BICR, blinded independent central review


NA, not available (no patients at risk at 5 years)

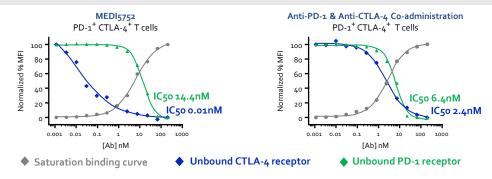
Negative PD-L1 cohort

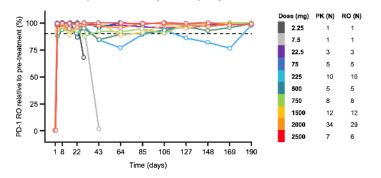
ún = 1861


(1 = 116)

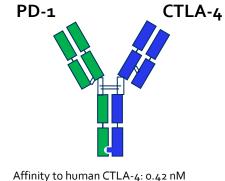
Adding a CTLA-4 to chemo/nivo: CheckMate 9LA

Adding a CTLA-4 improves OS in negative PD-L1 in POSEIDON


		Events/ patients, n/N	T+D+CT vs	CT _{HR}	Events/ patients, n/N	D+CT vs CT	HR
All patients		583/675	⊢ ●–	0.76	594/675	⊢ •-1	0.84
Sex	Male Female	455/517 128/158		0.68 0.92	450/501 144/174		- 0.79 0.90
Age	<65 years	308/367	_ ⊢ • _ I	0.76	299/345		0.86
PD-L1 expression	TC ≥50% TC <50% TC ≥1% TC <1%	161/198 422/477 350/420 233/255		0.62 0.81 0.71 H 0.81	162/191 432/483 371/431 223/243		0.65 0.91 0.78 - 0.98
Histology	SQ NSQ	229/246 353/428		0.85 0.69	234/250 358/423		0.82 0.81
Planned CT	Nab-paclitaxel doublet Pemetrexed doublet Gemcitabine doublet	: 36/42 338/411 209/222		0.61 0.71 0.85	43/49 343/407 208/219		0.75 0.80 0.89
Smoking history	Current Former Never	125/150 331/386 126/138		0.53 0.73 1.17	115/130 335/381 143/163		0.73 0.81 0.92
Race	Asian Non-Asian	189/227 394/448	⊢⊷┤	0.94 0.62	211/251 383/424		H 0.93 0.75
ECOG PS	0 1	187/229 396/446		0.74 0.72	193/228 401/447		0.73 0.86
Brain metastases	Yes No	64/78 519/597	F → +	0.79 0.73	62/73 532/602		- 0.83 0.81
AJCC disease stage	IVA IVB	290/337 292/335		0.71 0.81	288/336 304/337		0.70 0.99
		0.25	0.5 Favours T+D+CT	Favours CT	0.25	0.5 1 Favours D+CT	2 avours CT


HRs calculated using an unstratified Cox proportional hazards model; DCO 12 Mar 2021.

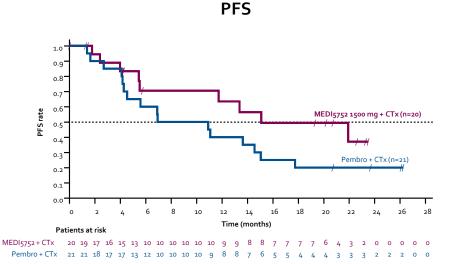
MEDI5752 enhances CTLA-4 blockade on PD-1+T cells


On activated T cells, MEDI5752 achieves comparable PD-1 binding and significantly greater CTLA-4 binding vs. co-administration

Peripheral PD-1 receptor occupancy

A monovalent bispecific antibody

Affinity to human PD-1: 0.81 nM


Fc isotype: human IgG1-TM (reduced ADCC)

CTLA-4 arm = Tremelimumab arm

CHO cell receptor occupancy assay assessed by flow cytometry; Reprinted with permission from Dovedi S, et al Cancer Discov. 2021 ADCC, antibody-dependent cellular cytotoxicity, CTLA-4, cytotoxic T-lymphocyte associated protein-4; PD-1, programmed death-1

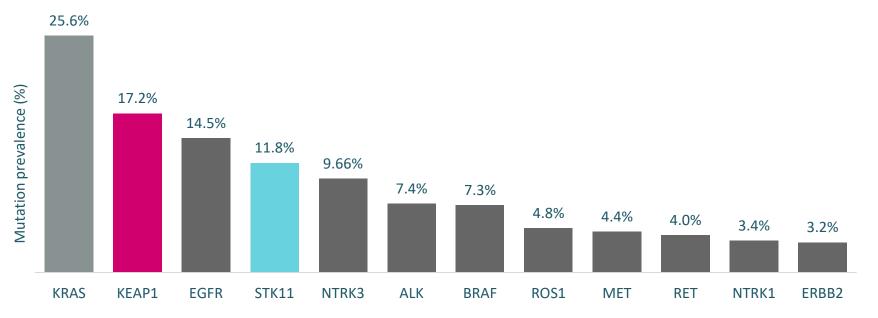
Bispecific MEDI5752 1500 mg + CTx better han pembrolizumab + CTx in first-line non-squamous NSCLC

	Randomised cohort (N=41)				
1L Non-squamous NSCLC	MEDI5752 1500 mg + CTx (n=20)	Pembrolizumab + CTx (n=21)			
Median follow-up, months (range)	22.8 (0.8–26.9)	14.5 (1.6–27.9)			
ORR, n (%)	10 (50.0)	10 (47.6)			
Disease control rate, n (%)	17 (85.0)	20 (95.2)			
Median DOR, months (95% CI)	20.5 (4.1–NE)	9.9 (2.8–NE)			
Median PFS, months	15.1	8.9			
Median OS, months	NR	16.5			
ORR, PD-L1 <1%, n/N (%) (95% CI)	5/9 (55.6) (21.2– 86.3)	3/10 (30.0) (6.7– 65.2)			
Median PFS, PD-L1 <1%, months	13.4	9			

CTx, chemotherapy; CR, complete response; DOR, duration of response; ITT, intent-to-treat; PFS, median progression-free survival; NR, not reached; NSCLC, non-small-cell lung cancer; ORR, objective response rate; OS, overall survival; PD-L1, programmed cell death ligand-1; PFS, progression-free survival; PR, partial response; uPR, unconfirmed partial response

Where Does Anti-CTLA-4 Fit? PD-L1 <1%

			PFS			OS		
		Median PFS (months)	3-y PFS	5-y PFS	Median OS (months)	3-y OS	5-y OS	
	CheckMate 227 ^{1,2}	-	-	-	17.5	35%	17.5%	
Non-squamous	CheckMate 9LA ^{3,4}	6.4	16%	-	18.6	25%	-	
	KEYNOTE-1895	6.2	4.8%	2.4%	17.2	23.3%	9.6%	
	CheckMate 227 ^{1,2}	-	-	-	16.3	34%	16.3%	
Squamous	CheckMate 9LA ^{3,4}	5.3	19%	-	15.3	25%	-	
	KEYNOTE-407 ⁶	6.3	11.6%	7.1%	15.0	22.1%	10.7%	


Not intended to be a cross-trial comparison.

1. Brahmer JR, et al. J Clin Oncol. 2022;41(6):1200-1212. 1. Par-Ares LG, et al. J Thorac Oncol. 2022;17(2):289-308. 3. Par-Ares LG, et al. J Clin Oncol. 2023;41(1):1999-2006.

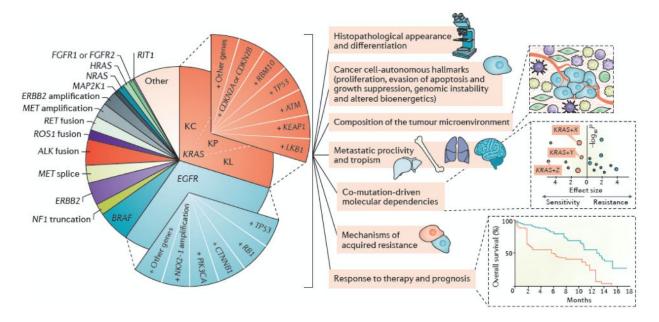
STK11/KEAP-1

WHICH BIOMARKERS ARE REQUIRED FOR TREATMENT DECISION-MAKING PRIOR TO INITIATING IO-BASED TREATMENT ?

STK11 and KEAP1 mutations occur frequently in NSCLC

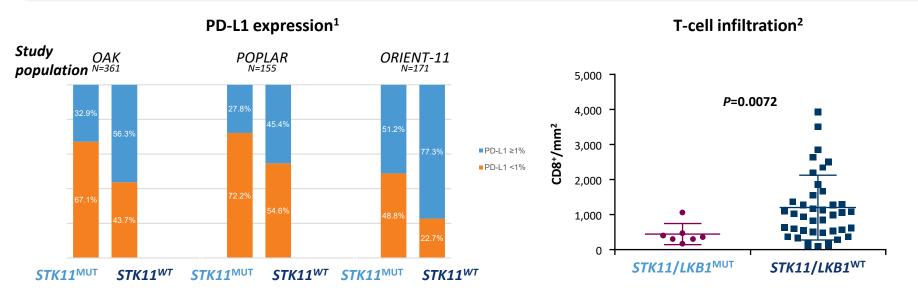
Mutation prevalence in patients with metastatic lung adenocarcinoma

National Cancer Institute. TCGA-LUAD for adenocarcinomas and TCGA-LUSC for squamous cell. Available at: <u>https://portal.gdc.cancer.gov/</u>. Accessed April 2024.


STK11 and *KEAP1* mutations can be detected by NGS, but only if it is a broad panel that includes those genes

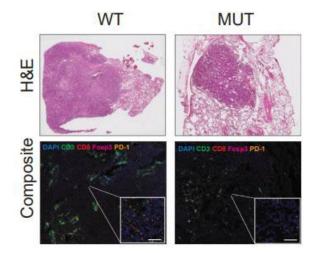
	Assay name	Company	STK11	KRAS	KEAP1	Sample type
	TruSight Oncology 500 ¹	Illumina	+	+	+	FFPE
/S	TruSight Oncology 500 High-Throughput ¹	Illumina	+	+	+	FFPE
ssays	TruSight Oncology 500 ctDNA assay v2 ²	Illumina	+	+	+	ctDNA
Э	TruSight Tumor 170 ³	Illumina	+	+	-	FFPE
sno	Illumina AmpliSeq Focus⁴	Illumina	-	+	-	FFPE
(in-house)	Illumina Comprehensive Panel ⁵	Illumina	+	+	-	FFPE
	Oncomine™ Focus Assay ⁶	Thermo Fisher	-	+	-	FFPE
alise	Oncomine [™] Comprehensive Assay ⁷	Thermo Fisher	+	+	-	FFPE
Decentralised	Oncomine [™] Precision Assay ⁸	Thermo Fisher	-	+	-	FFPE
ece	Oncomine [™] Dx Target Test ⁹	Thermo Fisher	-	+	-	FFPE
	Archer [®] VariantPlex [®] Comprehensive Thyroid and Lung (CTL) ¹⁰	Diagnostic Longwood	+	+	-	FFPE
	AmoyDx [®] HANDLE Classic NGS Panel ¹¹	Amoy Diagnostics	+	+	+	FFPE
sed ced)	Guardant360 [®] CDx ¹²	Guardant Health	+	+	-	ctDNA
Centralised outsourced	FoundationOne® CDx ¹³	Foundation Medicine	+	+	+	FFPE
Cer (out	FoundationOne [®] Liquid CDx ¹⁴	Foundation Medicine	+	+	+	ctDNA

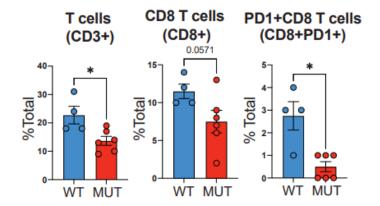
There are few commercially available NGS platforms that cover biomarkers for immunosuppressive status


Limitations in focusing on a single mutation

- Co-mutations constitute major determinants of tumor molecular diversity and can impact cancer hallmarks; determine prognosis; predict response to systemic therapies and influence mechanisms of innate and acquired resistance
- Co-occurring alterations can function as robust, and in many settings more precise, biomarkers of therapeutic response than single-gene predictors.

STK11 mutations are characterised as having 'cold' tumour microenvironments

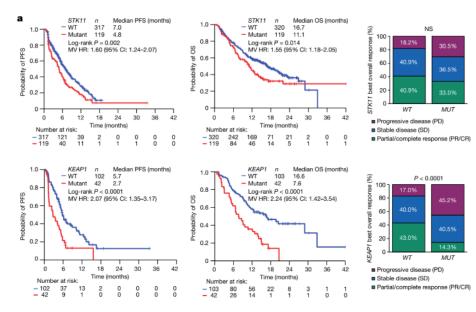

• When compared with wild-type tumours, *STK11* mutations are associated with a lack of PD-L1 expression and decreased infiltration of CD8 T cells^{1,2}

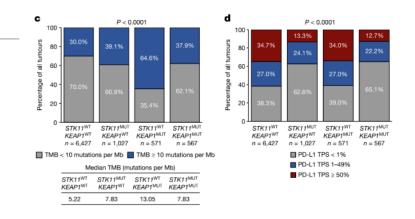


1. Adapted from: Li A, et al. J Thorac Oncol. 2023;18(12):1714-1730 [supplementary data]; 2. Skoulidis F, et al. J Clin Oncol. 2019;37(Suppl 15):Abstract 102 (Presented at ASCO 2019).

KEAP1 mutations are also associated with diminished PD-L1 expression and reduced T-cell infiltration

• *KEAP1*-mutated tumours have decreased infiltration of total CD₃T cells, CD8T cells and PD1-expressing CD8T cells compared with wild-type tumours




*P<0.05. Based on a preclinical murine model

Zavitsanou AM, et al. Cell Rep. 2023;42:113295.

Article

CTLA4 blockade abrogates *KEAP1/STK11*related resistance to PD-(L)1 inhibitors

h

12.0%

All LUAD

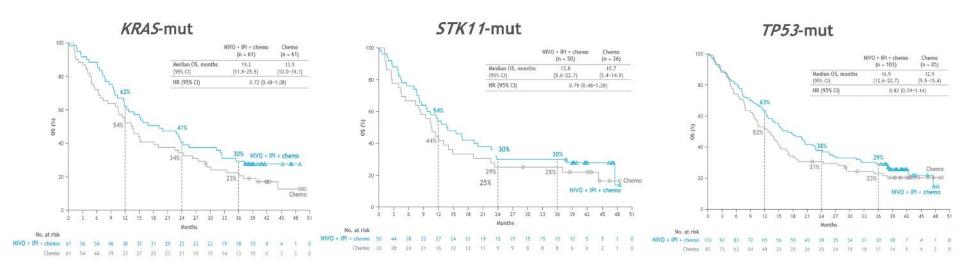
KRAS^{MUT}

STK11WT

STK11^{MUT}

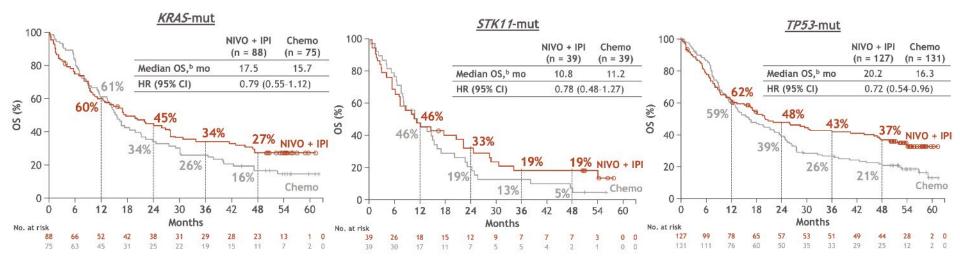
KEAP1^{WT}

KEAP1^{WT}


KEAP1MUT

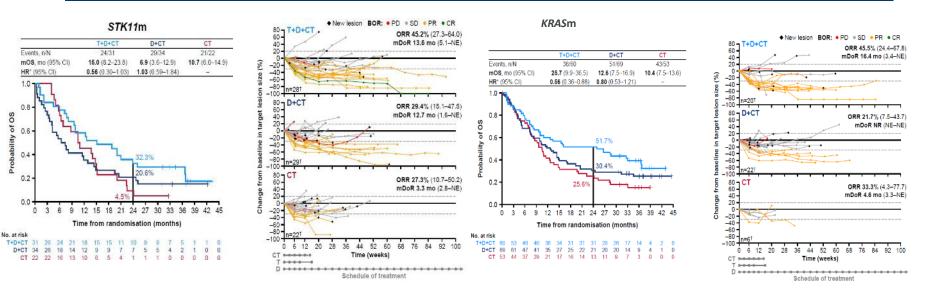
KEAP1^{MUT}

STK11^{MUT}


Addition of a CTLA-4 might improve outcomes in immunotherapy resistant biomarker-defined subgroups

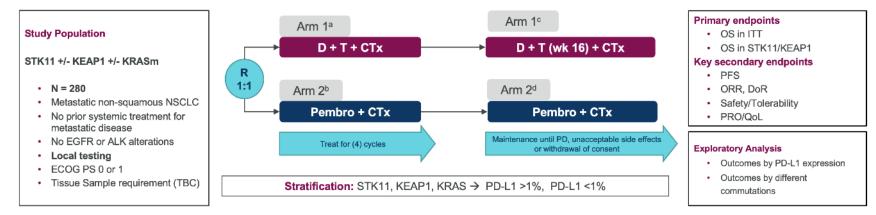
CheckMate 9LA: Exploratory analysis of OS by mutational status: KRASm, TP53m and STK11m

Exploratory analyses suggest addition of a CTLA-4 might improve outcomes in biomarker-defined subgroups


CheckMate 227: Exploratory analysis of OS by mutational status: KRASm, TP53m and STK11m¹

Exploratory analyses suggest addition of a CTLA-4 might improve outcomes in biomarker-defined subgroups

POSEIDON: STK11m and KRASm sub-analyses


Probability of OS

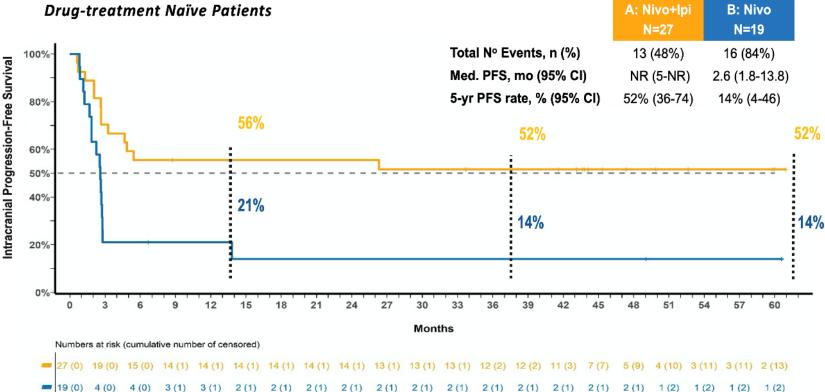
TRITON: An ongoing phase III trial

TRITON

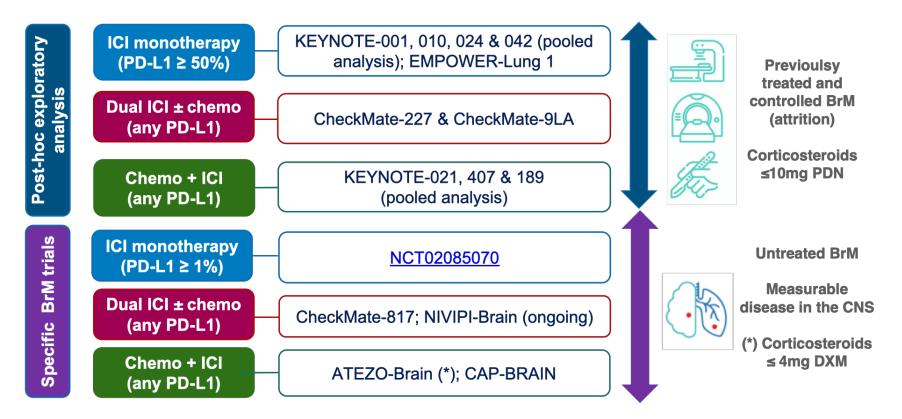
Phase IIIb randomized, open-label, multicenter study

*Durvalumab 1500 mg Q3W + tremelimumab 75 mg Q3W + (platinum + pemetrexed 500 mg/m² Q3W); tremelimumab (permitted up to 5 cycles). ^bPembrolizumab 200 mg Q3W + (platinum + pemetrexed 500 mg/m² Q3W). ^cDurvalumab 1500 mg Q4W + tremelimumab 75 mg (one dose at week 16 only) + pemetrexed 500 mg/m² Q3W. ^ePembrolizumab 200 mg Q3W + pemetrexed 500 mg/m² Q3W.

Participants must have tumors with STK11 or KEAP1 or KRAS mutations. Co-mutations are also allowed


WHAT CLINICAL CHARACTERISTICS MIGHT DICTATE DIFFERENTIAL DECISION-MAKING PROCESS

Brain Metastases

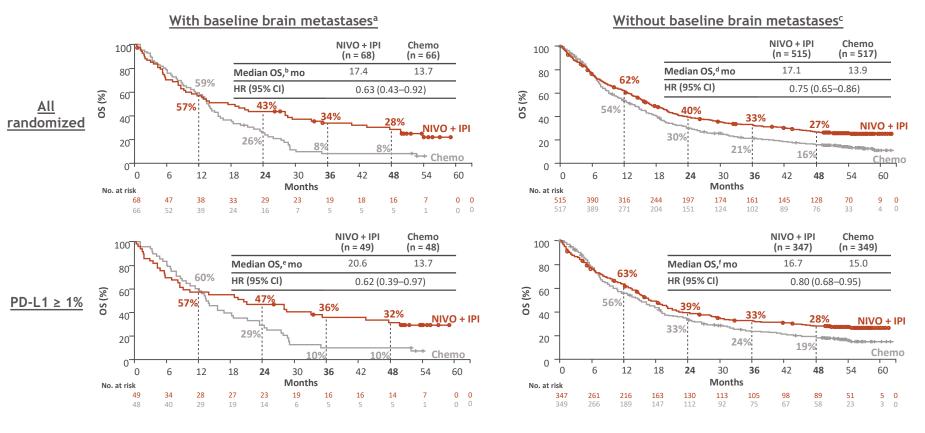

WHAT CLINICAL CHARACTERISTICS MIGHT DICTATE DIFFERENTIAL DECISION-MAKING PROCESS

Ipi/nivo more active option for melanoma CNS lesions

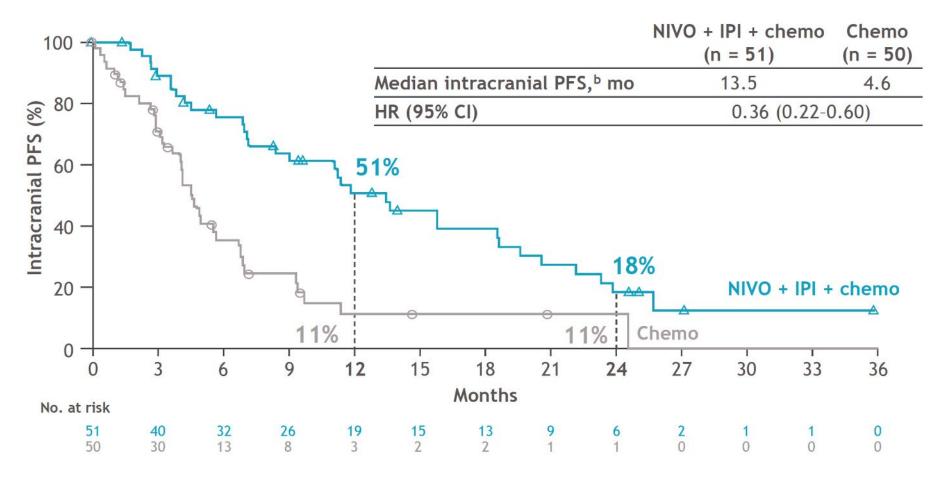
What can immunotherapy offer for patients with brain mets?

BrM = Brain metastases

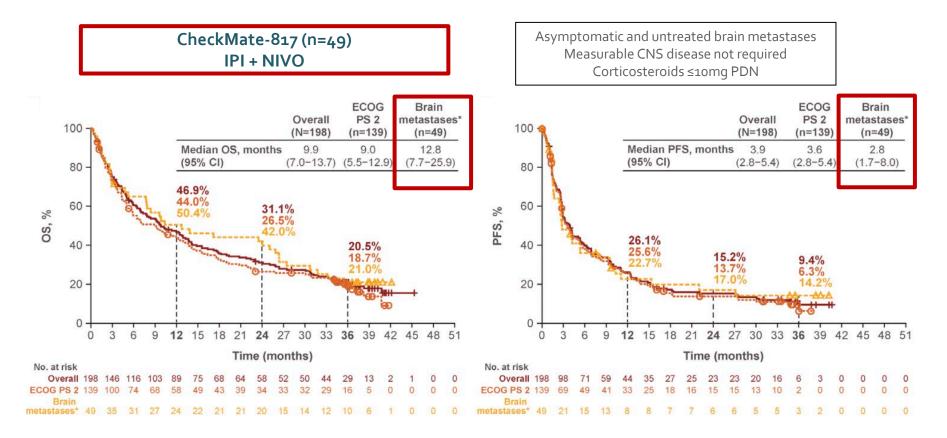
Nadal, ETOP 2024


Pooled analysis KEYNOTE 021-189-407: 1L pembro + chemo

171 / 1298 (13%) had BrM 20 /171 received prior brain RT (12%) Asymptomatic, no steroids


- Higher benefit in terms of OS in patients with brain mets (HR=0.48) compared to those without brain mets (HR=0.63)
- Patients without brain mets still have a 5 months better mOS in both arms
- Chemo is an obvious confounder

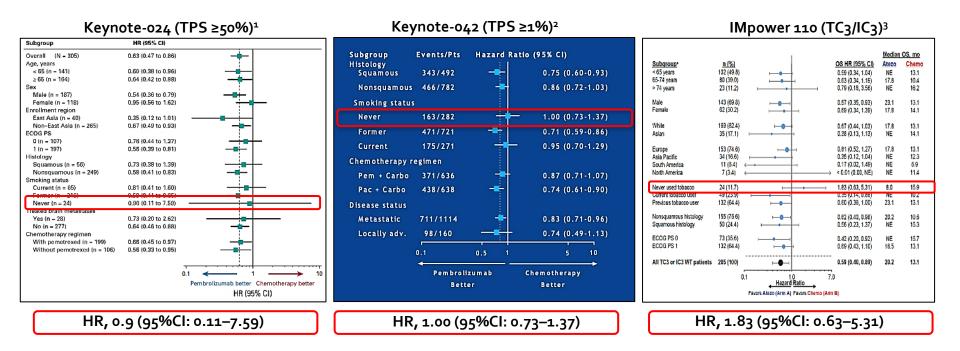
CheckMate 227: a higher magnitude of benefit if brain mets



Reck, ESMO IO 2021

CheckMate 9LA: a higher magnitude of benefit if brain mets

Dual ICI in patients with untreated BrM yielded a 2y OS rate of 31%

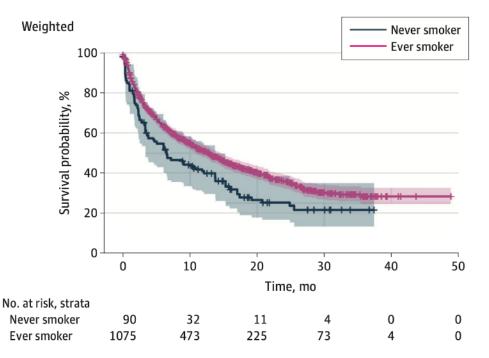


Ready et al. JITC 2023

Smoking habit

WHAT CLINICAL CHARACTERISTICS MIGHT DICTATE DIFFERENTIAL DECISION-MAKING PROCESS

The Problem of Never Smoker



Hazard ratios (95%CIs) in never-smokers

Cl, confidence interval; HR, hazard ratio; IC, immune cell; TC, tumor cell; TPS, tumor proportion score

1. Reck M et al, J Clin Oncol. 2019;37:537–46. 2. Lopes G et al, ASCO 2018, abstract LBA4; Herbst R et al, N Engl J Med. 2020;383:1328–39

Never Smoker represent an unmet need

Retrospective cohort study of 1166 patients selected from a nationwide real-world database originating from more than 280 US cancer clinics – pembro monotherapy

Popat, JAMA network 2022.

Pooled analysis first line IO vs chemo by smoking habit

				Hazard Ratio	Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.4.1 Current Smoke					
Carbone 2017		0.2606	6.7%		
Jassem 2021	-0.4943		4.0%	0.61 [0.30, 1.24]	
Mok 2019	-0.0513		12.8%		
Reck 2019	-0.2107	0.3474	4.3%		
Subtotal (95% CI)			27.8%		•
Heterogeneity: Tau² =		'= 3 (P =	0.63); l² =	: 0%	
Test for overall effect:	Z = 0.82 (P = 0.41)				
1.4.2 Ex-Smokers					
Carbone 2017	0.0862	0.1329	14.9%	1.09 [0.84, 1.41]	+
Jassem 2021	-0.2877	0.2384	7.7%	0.75 [0.47, 1.20]	+
Mok 2019	-0.3425	0.0945	18.8%	0.71 [0.59, 0.85]	+
Reck 2019	-0.5276	0.1857	10.6%	0.59 [0.41, 0.85]	
Subtotal (95% CI)			52.0%	0.78 [0.59, 1.01]	◆
Heterogeneity: Tau ² =	0.05; Chi ² = 9.62, df	= 3 (P =	0.02); I ² =	69%	
Test for overall effect:	Z = 1.87 (P = 0.06)				
1.4.3 Never Smokers					
Carbone 2017	0.0198	0.3245	4.8%	1.02 [0.54, 1.93]	
Jassem 2021	0.6831	0.4819	2.4%		
Mok 2019		0.1606	12.4%		+
Reck 2019	-0.1054		0.5%	0.90 [0.11, 7.36]	
Subtotal (95% CI)			20.2%		
Heterogeneity: Tau ² =	0.00: Chi ² = 1.85. df	'= 3 (P =	0.60): I ^z =	:0%	
Test for overall effect:					
Total (95% CI)			100.0%	0.87 [0.74, 1.01]	•
Heterogeneity: Tau ² =	0.02° Chi ² = 17.70 c	f = 11 (Ρ	= 0.09)		· · · · · · · · · · · · · · · · · · ·
Test for overall effect:			= 0.00),		0.01 0.1 1 10 10 Favours (IO) Favours (Chemo)

Corke, Curr Oncology 2022

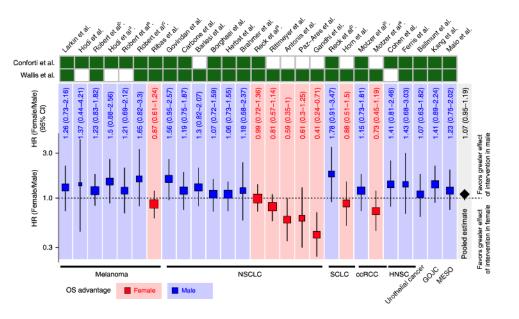
An hetergenous small subgroup that should receive chemo-IO

Empower-Lung 3

	Cemiplimab	Placebo	OS	
	+ chemotherapy (events/total)	+ chemotherapy (events/total)	Hazard ratio (95% CI)	
All patients	180/312	111/154	HH	0.645 (0.507, 0.820)
Age group				
<65 years	100/184	70/94	H++	0.525 (0.386, 0.715)
≥65 years	80/128	41/60	⊢• +I	0.807 (0.554, 1.177)
Sex				
Male	155/268	92/123	H	0.550 (0.424, 0.713)
Female	25/44	19/31		0.981 (0.540, 1.784)
Histology				
Squamous	79/133	47/67	H	0.608 (0.423, 0.874)
Non-squamous	101/179	64/87	H	0.639 (0.466, 0.875)
PD-L1				
<1%	66/95	34/44	⊢ •	0.939 (0.619, 1.423)
1-49%	62/114	43/61	HH	0.496 (0.335, 0.735)
≥50%	52/103	34/49	⊢ •−1	0.559 (0.362, 0.862)
ECOG performance state	us			
0	15/51	14/18	•	0.241 (0.115, 0.507)
1	163/259	96/134	H-H	0.696 (0.540, 0.897)
Brain metastasis at				
baseline				
Yes	12/24	7/7		0.285 (0.108, 0.749)
No	168/288	104/147	H	0.646 (0.505, 0.826)
Cancer stage at screening				
Locally advanced	21/45	18/24		0.502 (0.266, 0.945)
Metastatic	159/267	83/130	H	0.640 (0.494, 0.827)
Smoking history				
Smoker	155/269	96/130	H	0.584 (0.452, 0.754)
Non-smoker	25/43	15/24		0.853 (0.449, 1.621)
	Favours ce + chemothe		1	10 Favours placebo + chemotherapy

KEYNOTE-189

Subgroup	No. of Events/ No. of Patients	Hazard Ratio for Death (95% CI)	
Overall	235/616		0.49 (0.38-0.64)
Age			
<65 yr	133/312	_	0.43 (0.31-0.61)
≥65 yr	102/304		0.64 (0.43-0.95)
Sex			
Male	143/363		0.70 (0.50-0.99)
Female	92/253		0.29 (0.19-0.44)
ECOG performance-status score			
0	74/266	e	0.44 (0.28-0.71)
1	159/346	B	0.53 (0.39-0.73)
Smoking status			
Current or former	211/543		0.54 (0.41-0.71)
Never	24/73	_	0.23 (0.10-0.54)
Brain metastases at baseline			
Yes	51/108	_	0.36 (0.20-0.62)
No	184/508		0.53 (0.39-0.71)
PD-L1 tumor proportion score			
<1%	84/190	_	0.59 (0.38-0.92)
≥1%	135/388	_	0.47 (0.34-0.66)
1-49%	65/186		0.55 (0.34-0.90)
≥50%	70/202	e	0.42 (0.26-0.68)
Platinum-based drug			
Carboplatin	176/445		0.52 (0.39-0.71)
Cisplatin	59/171	8	0.41 (0.24-0.69)
		0.1 1.0	
			Combination etter


Gender

WHAT CLINICAL CHARACTERISTICS MIGHT DICTATE DIFFERENTIAL DECISION-MAKING PROCESS

Sex-associated molecular differences for cancer immunotherapy

Youqiong Ye^{1,2}, Ying Jing², Liang Li³, Gordon B. Mills⁴, Lixia Diao⁵, Hong Liu⁶ & Leng Han^{2,7}

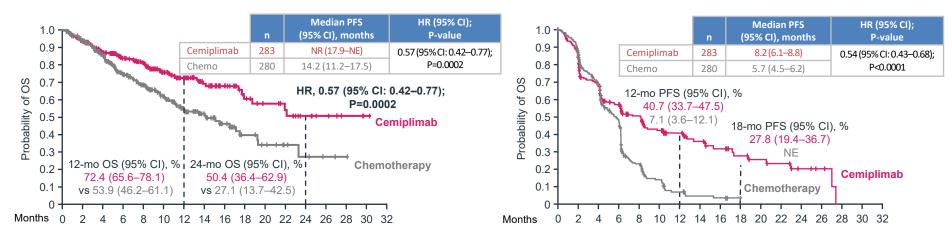
- No clear conclusion for whether gender is associated with immunotherapy response
- Gender effects differ between melanoma and NSCLC and render inappropriate meta-analysis pooling cancer types

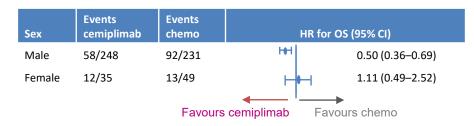
Proportion of females accros trials

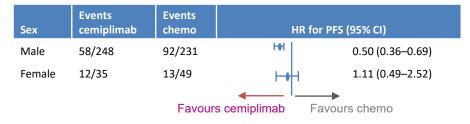
	Trial	Subgroup	% Fen	nales
			Chemo	Ю
Pembrolizumab ¹	KN-024		37%	40%
Pembrolizumab ¹	KN-042	PD-L1≥50%	30%	31%
Cemiplimab ²	EMPOWER-Lung 1	PD-L1≥50%	18%	12%
Atezolizumab ³	IMpower110	PD-L1 ≥ 50%	35%	26%
Nivolumab ⁴	CheckMate 026	PD-L1 ≥ 50%	44%	25%
Durvalumab⁵	MYSTIC	PDL1 ≥ 50%	35%	31%
Avelumab ⁶	Javelin 100	PDL1 ≥ 80%	27-28%	23-26%

¹Brahmer et al, ESMO 2020, Reck et al, JCO 2021;39:2339-2349. Mok et al, Lancet 2019; 393(10183):P1819-1830. Cho et al, JTO 2021;16(3S):S225<u></u>²Sezer et al, Lancet 2021;397:592-604. Özgüroğlu et al, Annal of Onc 2022; 33:57:S1421.³Jassem et al, JTO 2021;16:1872-82 (updated exploratory). Spigel et al, Annal Onc 2019;30(5):v915. ⁴Carbone et al, NEJM 2017;376:2415-26. ⁵Rivzi et al, JAMA Oncol. 2020;6(5):661-674. ⁶Reck et al, WCLC 2022;OA15.03.

OS by sex


KN-024		Subgroup Sex Male (n = Female (n				HR (95% Cl) 0.54 (0.36 to 0.79) 0.95 (0.56 to 1.62)
Empower-1		Male Female	58/248 12/35	92/231 13/49		0·50 (0·36–0·69) 1·11 (0·49–2·52)
IMpower110 High PDL1 (SP142 TC3/IC3 WT))	<u>Subgroup</u> ª Male Female	<u>n (%)</u> 143 (69.8) 62 (30.2))		OS HR (95% CI) ^b 0.57 (0.35, 0.93) 0.69 (0.34, 1.39)
KN-042 ^{PD-L1≥1%}		Sex Male Female		649/902 254/372	-	0.79 (0.68–0.93) 0.89 (0.69–1.15)
Javelin100 PD-L1≥80%	q2w qw	Male (n=158 vs 112) Female (n=58 vs 39) Male (n=93 vs 100) Female (n=36 vs 30)				0.77 (0.58 - 1.03) 1.10 (0.69 - 1.75) 0.78 (0.55 - 1.10) 0.85 (0.47 - 1.54)


Reck et al, JCO 2019; 37(7):537-546. 2 Sezer et al, Lancet 2021;397:592-604. Spigel et al, EMSO 2019. Mok et al, ELCC 2019. Reck et al, WCLC 2023;OA15.03


Empower-lung 1 trial - cemiplimab: Sex effect

OS in the PD-L1 ≥50% population

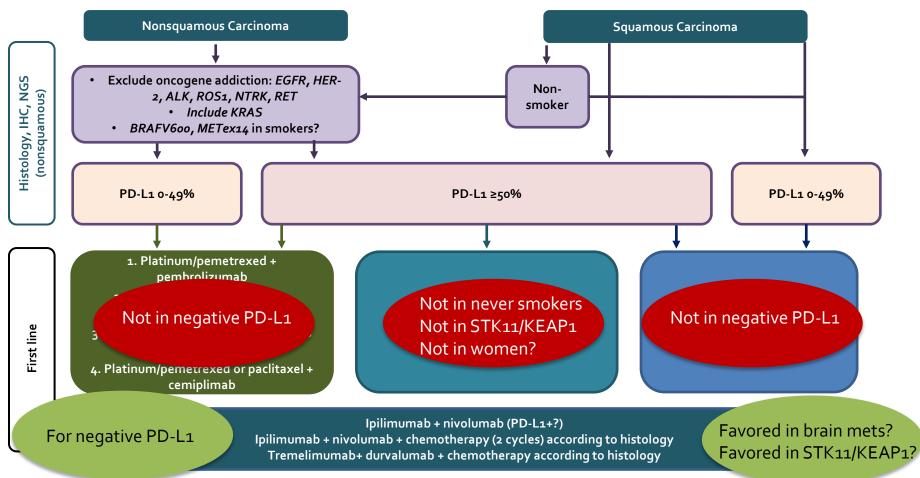
PFS in the PD-L1 ≥50% population

Impact of sex on IO-based therapy outcomes

Innate immunity: Enhanced in females¹

- Neutrophils phagocytic capacity
- Macrophagic activation
- Macrophagic phagocytic capacity
- APC efficiency
- Dendritic cell activities
- Toll-like receptors gene expression pathway

Adaptive immunity: Enhanced in females¹


- CD4+ T-cell count; CD4/CD8 T-cell ratio
- T-cell proliferation
- Activated T-cell count
- T-cell cytotoxicity
- B-cell count
- Antibody production

Meta-analyses: OS results for lung cancer patients receiving IO, IO + chemotherapy vs chemotherapy²

		Pooled OS HRs (95% CI)				
		IO (PD-[L]1)	IO (PD-[L]1) + chemo			
Male	vs chemo	0.78 (0.60–1.00)	0.76 (0.64–0.91)			
Female	vs chemo	0.97 (0.79–1.19)	0.44 (0.25–0.76)			
Female vs male		0.83 (0.65–1.06)	1.70 (1.16–2.49)			

1. Vavalà T, et al. Int J Mol Sci. 2021;22:11942. 2. Condorti F, et al. J Natl Cancer Inst. 2019;111:djz094 and ESMO open 2021

Adapting the algorithm?

LUDWIG CANCER RESEARCH

UNIL | Université de Lausanne

