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Background: Conventional cytotoxic chemotherapy (CCC) is the backbone of non-small-cell lung cancer (NSCLC)
treatment since decades and still represents a key element of the therapeutic armamentarium. Contrary to molecularly
targeted therapies and immune therapies, for which predictive biomarkers of activity have been actively looked for and
developed in parallel to the drug development process (‘companion biomarkers’), no patient selection biomarker is
currently available for CCC, precluding customizing treatment.
Materials and methods: We reviewed preclinical and clinical studies that assessed potential predictive biomarkers of
CCC used in NSCLC (platinum, antimetabolites, topoisomerase inhibitors, and spindle poisons). Biomarker evaluation
method, analytical validity, and robustness are described and challenged for each biomarker.
Results: The best-validated predictive biomarkers for efficacy are currently ERCC1, RRM1, and TS for platinum agents,
gemcitabine and pemetrexed, respectively. Other potential biomarkers include hENT1 for gemcitabine, class III β-tubulin
for spindle poisons, TOP2A expression and CEP17 duplication (mostly studied for predicting anthracyclines efficacy)
whose applicability concerning etoposide would deserve further evaluation. However, none of these biomarkers has till
now been validated prospectively in an appropriately designed and powered randomised trial, and none of them is
currently ready for implementation in routine clinical practice.
Conclusion: The search for predictive biomarkers to CCC has been proven challenging. If a plethora of biomarkers have
been evaluated either in the preclinical or in the clinical setting, none of them is ready for clinical implementation yet.
Considering that most mechanisms of resistance or sensitivity to CCC are multifactorial, a combinatorial approach might
be relevant and further efforts are required.
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introduction
Innovation and research in the field of conventional cytotoxic
chemotherapy (CCC) have markedly slowed down since the
advent of targeted anticancer therapy and immune checkpoint
inhibitors. Although these therapies have significantly improved
the outcome of some selected patients with non-small-cell lung
cancer (NSCLC), ∼60% of tumours do not present targetable
driver mutations, and only 15%–25% of NSCLC patients derive
benefit from immunotherapy [1–3]. CCC, which benefits clinic-
ally to a majority of patients, particularly in the adjuvant setting
[4], and costs 10 to 1000 times less than targeted or immune
therapies, still has a full role to play and remains the cornerstone
of the treatment of hundreds of thousands lung cancer patients
worldwide. Despite all recent therapeutic advances, NSCLC
remains the leading cause of cancer death, and improvements
are urgently needed [5]. Several factors explain this high mortal-
ity rate, including late patient diagnosis, preventing local
curative approaches (surgery, radiotherapy). Inner biological
aggressiveness, tumour heterogeneity, primary and acquired re-
sistance mechanisms concur to restrict the potential of systemic
treatments. Also, contrary to targeted therapies, CCC is unfortu-
nately still used in a historical ‘one-size fits all’ approach, which
is clearly suboptimal. Although several predictive biomarkers

for CCC efficacy have been explored, none of them has gone
through clinical implementation for routine daily practice, and
predictive biomarkers or molecular tools designed to customise
CCC to the patient’s tumour molecular profile are crucially
lacking. Such biomarkers would not only help identifying
chemosensitive patients and selecting appropriate drug combi-
nations upfront, but it would also avoid useless toxicities, de-
crease overall costs, and eventually improve patient outcome.
Noteworthy, the remarkable failure rate in the development of
biomarkers predicting CCC efficacy reflects how challenging
this task is.
Here, we present molecular mechanisms involved in either

sensitivity or resistance to CCC, and review the main biomar-
kers studied in the field of NSCLC. Their analytic validity, scien-
tific robustness and potential for clinical implementation will
also be discussed.

cytotoxic drugs and their clinical activity
in NSCLC
Four main classes of cytotoxic agents are commonly used to
treat NSCLC patients (Figure 1): (i) Alkylating agents—includ-
ing cisplatin and carboplatin—which directly damage DNA
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Figure 1. Main cellular targets of CCC drugs used in NSCLC. Antimetabolites (in orange) exert their effect by targeting key enzymes that regulate deoxynu-
cleotide bioavailability or acting as decoys by being misincorporated into nucleic acids. Platinum agents (in blue) induce DNA damage that disrupt replication
and transcription. Moreover, their capacity to link with RNA interferes with the translation process. Spindle poisons (in green) disrupt the polymerisation and
depolymerisation dynamics of microtubules. Topoisomerase inhibitors (in red) induce cell death by blockading the necessary DNA relaxation during replica-
tion and transcription. CCC, conventional cytotoxic chemotherapy; NSCLC, non-small-cell lung cancer; AICART, aminoimidazolecarboxamide ribonucleotide
formyltransferase; DHFR, dihydrofolate reductase; RR, ribonucleotide reductase; TS, thymidylate synthase; ZMP, 1-β-D-ribofuranosyl-5-Aminoimidazole-4-
carboxamide-50-phosphate.
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thereby disrupting its replication and transcription; (ii) antime-
tabolites (pemetrexed, gemcitabine), which block nucleic acid
synthesis by acting as decoys that either limit deoxyribonucleo-
side triphosphates (dNTPs) availability or get misincorporated
into nucleic acids; (iii) inhibitors of topoisomerases—key
enzymes that relax DNA supercoiling during replication and
transcription—including topoisomerase I (topotecan) and topo-
isomerase II (etoposide); (iv) spindle poisons, which disrupt the
polymerisation or depolymerisation of the microtubule of the
mitotic spindle and include vinorelbine, paclitaxel, and doce-
taxel [6]. Among these, platinum salts represent the backbone of
NSCLC treatment.
Historically, median time to progression and overall survival

of metastatic NSCLC with platinum-based doublets were 3.5 and
8 months, respectively [7]. The historical benchmark of 1-year
overall survival was reached in non-squamous NSCLC patients in
2006 by adding the antiangiogenic antibody bevacizumab to
carboplatin and paclitaxel [8] and in 2008 thanks to the develop-
ment of the multi-target antifolate pemetrexed [9, 10].
Other advances have been brought by non-cytotoxic agents: a

further 10–12 months gain in median survival was obtained
in molecularly selected populations presenting tumour EGFR
activating mutations or ALK translocations treated with specific
corresponding tyrosine kinase inhibitors (TKIs) [11, 12]. After
these druggable biomarkers, several other targets have been
uncovered (e.g. ROS1, MET, BRAF, NTRK, etc.) [13]. Most re-
cently, immune checkpoint blockers have demonstrated long-
time benefit in 20%–35% of metastatic NSCLC patients [2, 3, 14].
Contrary to these latter agents for which predictive biomarkers

of efficacy—such as EGFR or BRAF mutations, ALK transloca-
tions, or PD-L1 positivity—have been actively looked for and
developed almost in parallel of the drug development (‘compan-
ion biomarkers’), no single biomarker is currently approved for
customising the choice of CCC. However, several pharmacody-
namic, pharmacokinetic, or other molecular targets have been
identified that could potentially serve as selection biomarkers.

overview of global pharmacodynamic and
pharmacokinetic resistance mechanisms
to cytotoxic drugs in NSCLC
The first mechanisms of resistance to CCC are the alteration or
the absence of the drug’s target. Several cytotoxic drugs act
indeed at specific phases of the cell cycle and are sometimes
qualified as ‘cell cycle targeted compounds’. For instance, anti-
metabolites are mainly active during G1 and S phases, and topo-
isomerase inhibitors target the S phase, whereas spindle poisons
are only active on mitotic cells. Therefore, CCC is mostly active
on rapidly growing tumours, whereas tumour-initiating cells or
tumour stem cells (which are quiescent and not engaged into the
cell cycle) are in most cases resistant to CCC [15].
Beyond pharmacodynamic resistance mechanisms, insensitiv-

ity to CCC can also be explained by tumour-specific pharmaco-
kinetic features, including low drug influx or increased efflux
through the cell membrane, intracellular drug inactivation,
lack of activation, or detoxification (Figure 2). For example, high
activity of the detoxification protein gluthatione S-transferase
protein GSTP1 has been involved in resistance to platinum

agents [16]. Genetic germinal gene polymorphisms affecting the
detoxifying enzyme cytidine deaminase (CDA) have been
shown to determine bioavailability of gemcitabine both in the
tumour and in the liver, as recently reviewed elsewhere [17].
Intrinsic characteristics of the cancer cell can also play a

significant role in drug resistance. These include enhanced
ability to repair DNA damage—which removes chemo-induced
lesions—[18], increased expression of survival signalling path-
ways (e.g. HER2 overexpression or PI3K/AKT pathway activa-
tion) [19, 20], and alteration of the DNA damage or apoptosis
signalling cascades (e.g. loss of Chk1 or Chk2 function, or inter-
ference with caspases’ activation) [21, 22].
However, most resistance mechanisms are multifactorial. For

example, resistance to taxanes has been explained by a ‘multi-
drug resistance (MDR) phenotype’ resulting from overexpres-
sion of the ATP-binding cassette (ABC) transporter family
combined with the overexpression of the target tubulin [23–25].
Concomitant decrease in the intracellular concentration (inde-
pendent of MDR phenotype), increased levels of glutathione or
metallothioneins, and a better ability to repair DNA damage
can cause resistance to platinum agents [26].
Overall, many candidate biomarkers of chemosensitivity or

resistance have been studied, including drug transporters,
targets and associated proteins, together with elements involved
in metabolic detoxification processes, DNA repair ability, cell
cycle regulation, apoptotic or survival signals, and related tran-
scription factors [27]. However, only a few biomarkers harbour
the potential for clinical implementation.

critical overview of predictive biomarkers
of CCC efficacy in NSCLC

grading the evidence level of predictive biomarkers
In 2006, a literature review focused on predictive biomarkers
predicting response to cytotoxic chemotherapies in NSCLC
[28]. It revealed that out of 80 in vitro identified genes of inter-
est, only 13 had been evaluated in 27 clinical studies. Among
these, only four were deemed to be robust enough for further
clinical development, namely the transmembrane pump ABCB1
(P-glycoprotein) expression, GSTP1 expression, ERCC1 altera-
tions, and TP53 mutations. Ten years after, none of these has
been implemented in clinical practice, and, with the exception
of TP53 mutational status in some cases, none of them is even
looked at by clinicians. Several reasons explain the absence of
further clinical implementation: (i) the lack of technical hom-
ogenisation and standardisation between different studies (IHC
versus RT–PCR versus polymorphisms or missense mutations
at the DNA level), thereby preventing any reproducibility of the
results; (ii) the variability of judgment criteria and end points
(types of criteria, thresholds, choice of statistical tests); (iii) the
lack of analytical validation; and (iv) the inadequate study designs
and heterogeneous cohorts (retrospective approaches, limited
and statistically underpowered size of the study populations).
Several working groups have proposed different grading systems

for establishing the analytical validity of clinical biomarkers, includ-
ing the USA Preventive Services Task Force (USPSTF) [29, 30],
The Grading of Recommendations, Assessment, Development,
and Evaluation (GRADE) working group [31], and the Strength
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of recommendation taxonomy (SORT) group [32]. As no
grading system can perfectly recapitulate the robustness of all
biomarkers of interest, here we propose, for the purpose of this
review, the use of a simple grading system using three categories:
great, intermediate, and low promise with regards to clinical
utility (Table 1).

platinum compounds
Platinum compounds form both intra- and inter-strand DNA
adducts (or crosslinks), which impair DNA replication and tran-
scription that eventually leads to cell death. Several resistance
mechanisms to platinum-based chemotherapy have been

identified [26]. Briefly, transport mechanisms (Copper transport-
er 1, CTR1), detoxification proteins such as glutathione S-trans-
ferase (GSTM1 expression or variants), and tolerance-related
mechanisms such as apoptotic impairment (e.g. BCL-2 expres-
sion) have been reported as mediators of resistance [33–35].
Overexpression of XIAP, a cytoplasmic caspase-inhibiting
protein induced by cisplatin, has also been described [36].
However, none of these candidates have been clinically assessed
in an appropriately designed prospective trial, and their clinical
utility is therefore limited. More recently, low expression of
SMARCA4 (member of the ATP-dependent chromatin remodel-
ling complex SNF/SWI) was associated with improved efficacy of
platinum-based adjuvant chemotherapy in NSCLC, which
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Figure 2. Principal molecular determinants of CCC efficacy investigated in NSCLC. CCC resistance mechanisms find explanation in multiple mechanisms
not necessarily mutually exclusive, such as drug influx/efflux efficacy, activation/detoxification processes, target expression levels, DNA repair capacity, and

DNA lesion tolerance mechanisms such as failure to induce apoptosis. Platinum drug (in blue) efficacy depends on the CTR1 transporter, the GSTM1 detoxifi-
cation enzyme, the ERCC1 and MSH2 repair proteins, as well as on the anti-apoptotic protein BCL-2 and the chromatin remodelling regulator SMARCA4.
Therapeutic efficacy of antimetabolites (in orange) such as gemcitabine also relies on influx (hENT1), deactivation (CDA), or activation (dCK and cN-II).
However, overexpression of the target, RRM1, largely participates in gemcitabine resistance. Resistance to spindle poisons (in green) can be attributed to the in-
crease of drug efflux due to ABC transporter proteins (PGP, BCRP, and MRP1), overexpression of MAPs or tubulin itself, chromosomal instability, or to high
SMARCA4 expression. Studies on topoisomerase inhibitor-related biomarkers (in red) have identified MDR1 and TOP1 expression, as well as TP53 mutations,
but also CEP17 duplication. CCC, conventional cytotoxic chemotherapy; NSCLC, non-small-cell lung cancer; BCL-2, B-Cell CLL/Lymphoma 2; CDA, cytidine
deaminase, CEP17, pericentromeric alpha satellite repeat on chromosome 17; CTR1, copper transporter 1; GSTM1, glutathione S-transferase M1; ERCC1,
excision repair cross-complementation group 1; MSH2, MutS homologue 2; hENT1, human equilibrative nucleoside transporter 1; dCK, deoxycytidine kinase;
cN-II, cytosolic nucleotidase II/NT5C2; RRM1, ribonucleotide reductase M1; ABCB1/P-gp, ATP-binding cassette B1/P-glycoprotein; ABCC1/MRP1, ATP-
binding cassette C1/multidrug resistance-associated protein 1; ABCG2/BCRP, ATP-binding cassette G2/breast cancer resistance protein; MAPs, microtubule-
associated proteins; MDR1, multidrug resistance 1; TOP2A, topoisomerase II alpha.
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Table 1. Candidate biomarkers predicting CCC efficacy in NSCLC.

Biomarker level of action

Receptor or transporter Metabolic activation or
detoxification

Target modification DNA repair or genome
maintenance

Other processes (apoptotic,
epigenetic, etc.)

Drug class Cisplatinum
Carboplatinum

CTR1 expression GSTM1 variants or
expression

n.a.a MSH2 expression BCL-2 expression
SMARCA4 expression

ERCC1 expression (++)
Vinblastine
Vinorelbine
Paclitaxel
Nab-paclitaxel
Docetaxel

ABCB1/P-gp (MDR1)
expression

n.a. α- or β-tubulin expression pattern or level
(+)

Chromosomal instability SMARCA4 expression

ABCG2/BCRP
expression

Class I tubulin resistance mutations
(nucleotide 810 or 1092)

ABCC1/MRP1
expression

Expression profile of MAPs

Oral topotecan ABCG2/BCRP
expression

n.a. TOP1 mutations SLFN11 expression Suppression of apoptosis
TOP1 phosphorylation (S506) Activation of survival pathways

(ERBB pathway)
Etoposide
Anthracycline
(Doxorubicine)

ABCB1/P-gp (MDR1)
expression

n.a. TOP2A expression n.a. ERBB2 and TOP2A co-
amplification

TOP2A copy number alterations TP53 mutations

CEP17 duplication
Gemcitabine hENT1 expressiona dCK expression RRM1 expression (++) n.a. n.a.

CDA expression
cN-II expression

Pemetrexed n.a. n.a. TS expression (++) n.a. n.a.

The other biomarkers might be considered as ‘low’ promise.
++, ‘great’ promise with regard to clinical utility; +, ‘intermediate’ promise.
an.a., not available.


|O

laussen
and

P
ostel-Vinay

Volum
e
27

|N
o.11

|N
ovem

ber2016

review
s

A
nnals

ofO
ncology



observation needs to be confirmed in independent validation
studies [37].
The most promising biomarkers for predicting response to

platinum agents are currently the proteins involved in DNA
repair processes. Indeed, the ability of the cell to remove platinum
adducts is inversely proportional to the platinum sensitivity. If
intra-strand crosslinks can be removed by activation of the nu-
cleotide excision repair (NER) pathway, several factors of different
DNA repair pathways must cooperate to repair inter-strand cross-
links, including the FANC family of proteins (Fanconi pathway),
BRCA1, BRCA2, ATM and ATR (homologous recombination
pathway), DNA polymerase ν (translesion synthesis pathway), as
well as other protein complexes such as BTR (Bloom’s syndrome
complex containing BLM and TOPIIIα) [38].
ERCC1 is a pivotal endonuclease in the NER repair pathway.

The gene presents a frequent conservative single-nucleotide poly-
morphism (SNP) at the third position of codon 118 (rs11615,
AAC/AAT). Although both alleles are coding for asparagine, the
variant T allele is associated with an ∼50% reduction in platinum
DNA adduct repair capacity, probably secondary to a reduced
production of ERCC1 mRNA [39]. It was not correlated with
outcome after cisplatin-based therapy, contrary to what was
observed for another polymorphism in linkage disequilibrium
(C8092A) [40].
Other investigators have focused on ERCC1 mRNA expres-

sion and reported that higher expression was associated with
clinical resistance to platinum in NSCLC, as well as in other
tumour types including stomach and ovarian cancer [41–43]. In
2006, ERCC1 protein expression was reported as a predictive
marker of outcome on platinum-based chemotherapy in the large
International Adjuvant Lung Trial (IALT) [44]. The underlying
basis for ERCC1 as a key determinant of platinum sensitivity
was further highlighted by Friboulet et al. [45], who showed that
ERCC1-deficient NSCLC cell lines were unable to eliminate
platinum-DNA adducts in vitro and in vivo, and that ERCC1_
202 isoform only was fully able to restore platinum resistance.
However, this work, which used samples from the LACE-bio
study and a more recent batch of the ERCC1 antibody, failed to
revalidate the initial IALT results. It also demonstrated that all
current commercially available antibodies recognised multiple
isoforms of ERCC1, thereby potentially leading to misclassifica-
tion of the ERCC1-proficient and ERCC1-deficient populations
secondary to overexpression of inactive isoforms. Following this
finding, the only randomised phase III trial designed to evaluate
prospectively ERCC1 as predictive biomarker (the ET trial) was
halted for futility, and its results would soon be available.
However, ERCC1 remains a highly promising biomarker, and
the development of a relevant assay for determining ERCC1
status is the matter of intense work in several research teams
worldwide [46].

predictors related to spindle poison efficacy
Tubulin, the target of spindle poisons, constitutes an interesting
candidate as a predictive biomarker in NSCLC. In particular,
the overexpression of the class III β-tubulin alpha (α-) or beta
(β-) was described as responsible for resistance to taxanes in
breast and ovarian cancers, but also in lung malignancies [47–54].
However, when class III β-tubulin (TUBB3) expression was tested

for cross-validation by IHC in the LACE-bio study on 1149
patients, no predictive effect for vinorelbine efficacy could
be confirmed, although the prognostic effect was validated
(HR = 1.27 for death with high TUBB3 expression) [55]. Other
highly investigated biomarkers for spindle poison efficacy are
the expression of ABC transporters (PGP, BCRP, MRP-1) [56]
and microtubule-associated proteins (MAPs); chromosomal in-
stability is sounded out too [57, 58]. However, as most of these
studies were conducted on cell lines or small-sized retrospective
cohorts, these biomarkers currently do not get enough consen-
sus for clinical validation and should be graded as low level of
promise. Of notice, confirmatory studies of recent reports on
docetaxel and chromatin regulators such as SMARCA4 are
highly awaited [59].

antimetabolites
gemcitabine. Gemcitabine is a pyrimidine analogue that inhibits
the ribonucleotide reductase (RR) class IA—the main human
enzyme for biosynthesis of deoxyribonucleotides. RR is
allosterically regulated by ATP (activator) and dATP (inhibitor) to
maintain balanced NTP versus dNTP pools in the cell, thereby
protecting from toxic and mutagenic effects that can arise from
dNTP overproduction [60]. RR is a large oligomer consisting of its
catalytic subunit RRM1 and one of its two regulative subunits:
RRM2 or p53R2 (a p53-regulated paralog of RRM2). The binding
of gemcitabine diphosphate, the active metabolite, to the (RRM1)
6/(RRM2)2 or (RRM1)6/(p53R2)2 oligomers inhibits the function
of the enzyme [61, 62].
The two most promising predictive biomarkers of gemcita-

bine efficacy are the transporter human equilibrative nucleoside
transporter 1 (hENT1) and RRM1 [63]. Among many, one
recent study on 110 pancreatic cancer patients in the preopera-
tive setting correlated higher survival rates with increased
gemcitabine tumour exposure, which itself correlated with
hENT1 expression [64]. In NSCLC, only few consistent retro-
spective clinical studies have been conducted on hENT1, but the
data remain less impressive [65–67]. Overall, hENT1 is not
ready for clinical routine use in NSCLC and would classify as
being of intermediate promise.
As RRM1 contributes to the synthesis of dNTPs—the building

blocks necessary to any DNA repair process—high RRM1 expres-
sion associates with increased DNA damage repair capacity and
vice versa [68]. Of notice, both RRM1 and RRM2 expressions
have been associated with gemcitabine resistance in cell lines and
in patients, although most studies have focused on RRM1 [69, 70].
High RRM1 expression was first retrospectively correlated with re-
sistance to gemcitabine in 67 stage IIB-IIIB NSCLC patients in the
neoadjuvant setting [71]—a finding that was further confirmed in
the metastatic setting in several retrospective studies, using either
platinum-based [72–74] or non-platinum-based doublets such as
gemcitabine–pemetrexed [75] (reviewed in [76, 77]). Several
studies confirmed the feasibility of prospectively analysing RRM1
status using RT–PCR [78], antibody-based techniques [79, 80], or
RRM1 SNP analysis (−37C/A and −524T/C) [81], which places
RRM1 as the most robust and promising biomarker for gemcita-
bine efficacy. Beyond IHC or PCR, an interesting technology based
on fluorescent RRM1 and ERCC1 antibodies with automated
quantitative image analysis (the ‘AQUA’ system) created initially a
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large excitement. However, its prospective evaluation for chemo-
therapy assignment in a large randomised phase III trial in stage
IIIB/IV NSCLC failed to demonstrate a superiority of the custo-
mised arm [80, 82].

pemetrexed. Pemetrexed is a multi-target antifolate compound
that primarily targets the thymidylate synthase (TS)—an enzyme
responsible for maintaining the dTMP pool—thereby reducing the
amount of thymidine available for DNA replication and repair.
Two other enzymes required for de novo purine biosynthesis
are also inhibited by this drug: dihydrofolate reductase (DHFR)
and aminoimidazolecarboxamide ribonucleotide formyltransferase
(AICART) [83]. Several studies have suggested better survival and
response rates following pemetrexed treatment in patients with
tumours harbouring low TS expression, which was confirmed by
several large meta-analyses [84, 85]. Even if these data derived
from retrospective and non-randomised studies, it is clear that TS
represents a robust biomarker for pemetrexed activity. In clinical
practice, although levels of TS are not directly assessed, pemetrexed
is already the preferred treatment of non-squamous NSCLC, which
harbour lower levels of TS compared with squamous NSCLC [10].
Therefore, TS could be considered as displaying a ‘high’ level of
promise as predictive biomarker pemetrexed efficacy if a prospective
validation existed. Other potential biomarkers, but with less
convincing data in NSCLC, are DHFR, glycinamide ribonucleotide
formyltransferase (GART), proton-coupled folate transporter
(PCFT), folylpolyglutamate synthase (FPGS), and deoxycytidine
kinase (dCK) that activates gemcitabine [66, 67, 69, 86, 87].

topoisomerase II inhibitors
Etoposide, although less frequently used in NSCLC, acts by
trapping Top II on to DNA, thereby preventing DNA replica-
tion and transcription, and causing DNA single- and double-
strand breaks (DSBs) which in turn result in apoptosis when not
adequately repaired [88].
Most of the work on topoisomerase II inhibitors comes from

work carried out in breast cancer research and relates to anthracy-
clines sensitivity. In this context, topoisomerase IIα (TOP2A) ex-
pression and in a lesser degree CEP17 duplication
(pericentromeric alpha satellite repeat on chromosome 17) or
chromosome instability (CIN) are the most robust candidate pre-
dictors of efficacy [89, 90], but they still need prospective valid-
ation. Other published hits are MDR1 expression [91], (TOP2A)
copy number alterations [92], TOP2A/ERBB2 co-amplification
[93], tissue inhibitor of metalloproteases 1 (TIMP-1), and
decreased apoptosis via BCL-2 interaction [94] or mutated TP53
[95]. However, none of these biomarkers has been robustly evalu-
ated in NSCLC and for etoposide treatment, and hence do not re-
present promising candidates in this context.

topoisomerase I inhibitors
Even more rarely prescribed in NSCLC is the oral form of topo-
tecan that has shown some clinical activity (5% response rate)
with acceptable tolerability in relapsed, locally advanced, unre-
sectable NSCLC [96]. This topoisomerase I inhibitor prevents
religation of DNA. The DNA/topo-I/drug complex collides with
replication forks during S phase, which results in DSBs and
apoptosis only in dividing cells [97].

The most recent data on biomarkers of topoisomerase I inhi-
bitors concern the phosphorylation level of serine 506 (PS506)
on topoisomerase-I (TOP1) that seems related to irinotecan sen-
sitivity by increasing the capacity of TOP1 to bind DNA [98].
The other candidate predictors such as drug efflux transporters
(ABCG2/BCRP) [99, 100], topoisomerase I mutations [101],
suppression of apoptosis [102], or SLFN11 [103]. However, no
translational or clinical study has been initiated based on these
results yet.

inhibition of growth signalling pathways
and impact on CCC sensitivity
Depicting the mechanisms underlying some associations
between inhibition of growth signalling pathways and sensitivity
to CCC has been the matter of intense research. However, most
of the research carried out in vitro has not been validated in
retrospective clinical translational studies yet and has not gener-
ated any hypothesis-driven trial. Therefore, we will only describe
a few examples. Enhanced activity of pemetrexed has been
described in ALK-positive and EGFR-mutated NSCLC tumours
[104, 105]. The mechanism is unclear since adenocarcinomas
intrinsiqually underexpress TS compared with their squamous
counterpart, but there is generally a weaker expression of TS
in ALK-positive cells compared with ALK-negative cells [106].
A spillover effect of pemetrexed to mTORC1 due to AICART in-
hibition could also explain its enhanced effect in ALK-positive
and EGFR-mutated NSCLC tumours [107, 108]. Further, gem-
citabine transport inhibition has been linked to TKIs exposure
(including erlotinib, gefitinib, and vandetanib) in yeast and
cell lines [109]. As tentative explanations, the influence of pro-
survival transcription factors such as STAT3, anti-apoptotic
proteins like c-FLIP, or the expression of DNA repair proteins
like Rad51 is currently being investigated [110–112]. Also,
FGFR4 up-regulation has been associated with resistance to the
DNA-damaging agent doxorubicin, and the targeting of FGFR4
enhances sensitivity to 5-FU and oxaliplatin in colon cancer cell
lines [110, 113]. Overall, none of these ‘signalling pathway-
related’ biomarkers has been robustly linked to activity of CCC
in clinical samples, and their use as predictive biomarker out of
the scope of TKIs sensitivity appears today rather unlikely and
premature. Further, and contrasting with these preclinical obser-
vations, none of the trials associating a tyrosine kinase inhibitor
to a cytotoxic agent (in a concomitant setting) demonstrated su-
periority to the cytotoxic regimen alone [114]. A potential
blockade of the cells in the G1 phase by the TKI—which would
reduce sensitivity to cytotoxic agents targeting cycling cells—
has been hypothesised for these negative results. Therefore, a
smarter scheduling of the TKI and CCC (e.g. sequential admin-
istration) might allow a stronger therapeutic impact.

practical issues and challenges to
consider for successful biomarker
development
Mandatory key steps have to be followed for ensuring successful
biomarker development (Figure 3). If only 3%–5% of candidates
will eventually reach the clinic [115–117], the attrition rate for
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CCC-related biomarkers has been particularly high. Beyond his-
torical reasons—the mechanism of action of some agents was
unknown at the time of their first clinical administration—one
important cause of failure is the lack of standardisation in bio-
logical, technical, and clinical approaches, harbouring intrinsic
complexity. As CCC has proven efficacy and is the standard of
care in almost all stages of NSCLC, the design of randomised clin-
ical trials appropriately addressing the validation of a biomarker
is challenging, as a placebo arm is no longer an option. The
design of ‘customised’ trials (where chemotherapy choice is
guided by the biomarker) is therefore precious, but these require
large number of patients to avoid being underpowered, and data
interpretation is impacted by the fact that most chemotherapies
are prescribed in combination. The difficulty and potential lack of
motivation of most drug companies and academics to work on
CCC biomarker development are well illustrated by the very low
number of clinical trials currently investigating such biomarkers
(Table 2). Tangible challenges include the intra-tumour hetero-
geneity, the spatial and temporal biological variability, the scien-
tific relevance of the biomarker, and the multiplicity of

interdependent mechanisms underlying sensitivity/resistance. As
these first challenges are somehow inherent to clinical practice
and tumour biology—and as such cannot be influenced—most
attention should be put on technical standardisation, for which
precise guidelines should be established. These include the pre-
analytical standardisation (tissue sampling, handling, etc.), the
analytical standardisation (material to be studied, thresholds for
significance and scoring systems used, etc.), and the post-analytic-
al standardisation (learning processes, inter-centre reproducibil-
ity, etc.) [118–120]. Importantly, all these ‘fit-for-purpose’ assay
validation steps are interconnected and should be regularly re-
evaluated to best fit therapeutic and technological advances.

lessons learned and future challenges
Despite all efforts that have been put on identifying predictive
biomarkers for sensitivity to CCC, results have been disappoint-
ing so far and an extremely high attrition rate between promis-
ing preclinical data and negative clinical results has been
observed. Only two or three major biomarkers (RRM1, ERCC1,
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Table 2. Ongoing clinical trials evaluating biomarkers of response to cytotoxic conventional chemotherapy in all tumour types

Biomarker Analysis Study Tumour type Setting Therapeutic intervention

ERCC1, RRM1, TS Prospective NCT01784549 (CONTEST) NSCLC Stage IIIA (N2) Cisplatin
Vinorelbine
Gemcitabine
Docetaxel
Pemetrexed

ERCC1, TS, TOP2A Retrospective NCT02535325 NSCLC Advanced/metastatic Radiotherapy
Cisplatin
Methoxyamine

ERCC1, RRM1, TS Retrospective NCT01574300 (CASTLE) NSCLC Any Any
ERCC1 Retrospective NCT02128906 HNSCC Locally advanced Radiotherapy

Cisplatin
Docetaxel-cetuximab

ERCC1 Retrospective NCT00953511 (CERP-study) Oesophageal cancer Neoadjuvant Radiotherapy
Cisplatin
Fluorouracil

ERCC1 Prospective NCT01703390 Colorectal cancer Metastatic Oxaliplatin
Fluorouracil
cetuximab
Irinotecan

ERCC1 Retrospective NCT01748825 Solid tumours Metastatic AZD-1775
ERCC1 Retrospective NCT01989546 Breast and Ovarian cancer Advanced/metastatic BMN763 (talazoparib)

TOP2A Prospective NCT02339532 Breast cancer Neoadjuvant Docetaxel
Trastuzumab
Pertuzumab
Carboplatin

TUBB3 Retrospective NCT01865045 Pleural mesothelioma Advanced/metastatic Vinorelbine
hENT1 Retrospective NCT02486497 Pancreatic cancer Adjuvant Gemcitabine

Fluorouracil
hENT1 Retrospective NCT01586611 (Panc001) Pancreatic cancer Metastatic Gemcitabine

Fluorouracil
Oxaliplatin

hENT1 Prospective NCT01411072 Pancreatic cancer Metastatic Gemcitabine
Fluorouracil

Retrospective analyses correspond to trials where the potential role of the biomarker will be analysed after trial completion; prospective analyses correspond to trials where the biomarker will be analysed
before starting treatment and guide treatment allocation. Conventional cytotoxic chemotherapies of interest are highlighted in bold.
HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small-cell lung cancer; SCLC, small cell lung cancer.
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TS) might be considered as still in the race in NSCLC. One
major aspect has hampered the selection of biomarkers, which
is that chemotherapeutic agents are usually given in combin-
ation. For instance, cisplatin resistance may be mediated by
enhanced DNA repair, which is initially meant to be overcome
by co-administration of gemcitabine that induces an attrition of
available dNTPs, thereby preventing chain elongation during
the DNA repair process [121, 122]. Therefore, future studies will
have to better integrate multiple markers to develop biologically
meaningful predictive algorithms that explain treatment failure.
Several other caveats can explain the disappointing results in

the field: (i) the limited interest for analytical validity (lack of pro-
cedures standardisation, excessive number of techniques and
methods explored); (ii) the experiences being run on small retro-
spective patient series instead of prospective ‘on-purpose’ designed
trials; (iii) the difficulty in initiating well-designed randomised
trials including a control arm (as CCC is now a standard in almost
all settings in NSCLC); (iv) the lack of interest of industrials and
academics (either for functional validation of known candidates or
for the discovery of novel targets), as the cost of developing a bio-
marker would ostensibly overcome the current cost of CCC;
however, the recent work carried out on ERCC1 isoforms and the
variability of the 8F1 antibody nicely illustrates how well-designed
functional studies can explain repeated failures in clinical trials
aimed at biomarker validation; and (v) the exclusive focus on
DNA repair capacity of cancer cells. Indeed, recent evidence
demonstrates that epigenetic factors can also play a role in re-
sponse to CCC [123], as well as microenvironmental elements (in-
cluding stromal and immune cells) [124, 125].
There is nevertheless hope in this challenging field. Examples

include recent work on DNA signatures for predicting sensitiv-
ity to DNA-targeting agents (e.g. PARP inhibitors), which actu-
ally have the advantage of working on a reliable material (DNA)
that yields reproducible results [110, 111]. Also, the decreasing
cost of targeted gene panel sequencing opens promising future
for identifying deleterious mutations in DNA repair genes
that would predispose to CCC sensitivity. Moreover, the ability
to use such techniques on circulating biomarkers (ctDNA)
represents an attractive non-invasive opportunity for stratifying
patients and monitoring tumour evolutions [126]. Recent work
focusing on epigenetic regulators should also be encouraged [37,
59]. At a more preliminary level, other techniques such as RNAseq
or methylome analysis could also bring interesting promises.
Finally, it is important to remember that assessing a target at
the protein expression level (rather than DNA or RNA) is still the
most relevant in most cases, and novel techniques allowing the
analysis of hundreds of samples by IHC on automated instruments
followed by rapid image analysis raise new hopes.
In conclusion, despite the absence of validated predictive bio-

marker for CCC customisation, novel technological advances
open encouraging perspectives for performing analytical valid-
ation of some promising candidates that have been identified so
far, or for developing novel types of predictive biomarkers—
such as DNA signatures. Most importantly, patients are eager to
know as much as possible about their tumour and to benefit
from a customised treatment, even within the frame of an
exploratory clinical trial. Clinicians and academic researchers
should therefore be committed to pursue investigations in this
field.
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