

A moving field

Name

Martin Reck

Department of Thoracic Oncology

Airway Research Center North, German Center for Lung Research

LungenClinic, Germany

DECLARATION OF INTERESTS

Martin Reck

Honoraria for lectures and consultancies (self fee) from:

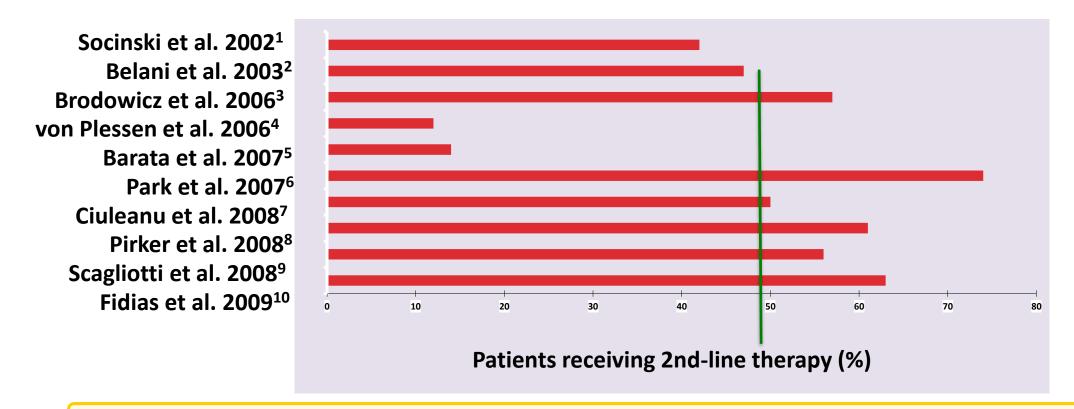
Amgen, AstraZeneca, Beigene, BMS, Boehringer-Ingelheim, Daiichi-Sankyo, Lilly, Merck, Mirati, MSD, Novartis, Pfizer, Roche, Sanofi

Institutional Support for clinical trials from:

BMS, Boehringer-Ingelheim

Research funding for clinical trials paid to my institution by:

Amgen, AstraZeneca, Beigene, BMS, Boehringer-Ingelheim, Daiichi-Sankyo, Lilly, Merck, Mirati, MSD, Novartis, Pfizer, Roche, Gilead



CHALLENGES IN SECOND-LINE TREATMENT I

- . Pretreated Patients
- Reduced performance status: Tolerability becomes more important.
- Low response rates: Tumor control becomes important.
- More symptomatic patients: Symptom control and symptom improvement become important.
- . It is hard to show any improvement in efficacy...

SECOND-LINE TREATMENT – CHALLENGES II

In recent studies, approximately 50% of patients did not receive second-line therapy

¹J Clin Oncol 2002;20:1335–43; ²J Clin Oncol 2003;21:2933–39; ³Lung Cancer 2006;52:155–63; ⁴Br J Cancer 2006;95:966–73; ⁵J Thoracic Oncol 2007;2(Suppl. 4):S666 Abs. P2-235; ⁶J Clin Oncol 2007;25:5233–39; ⁷J Clin Oncol 2008;26(Suppl. 15S):426s Abs. 8011; ⁸J Clin Oncol 2008;26(Suppl. 15S):6s Abs. 3; ⁹J Clin Oncol 2008;26:3543–51; ¹⁰J Clin Oncol 2009;27:

THE THREE PERIODS OF SECOND-LINE TREATMENT

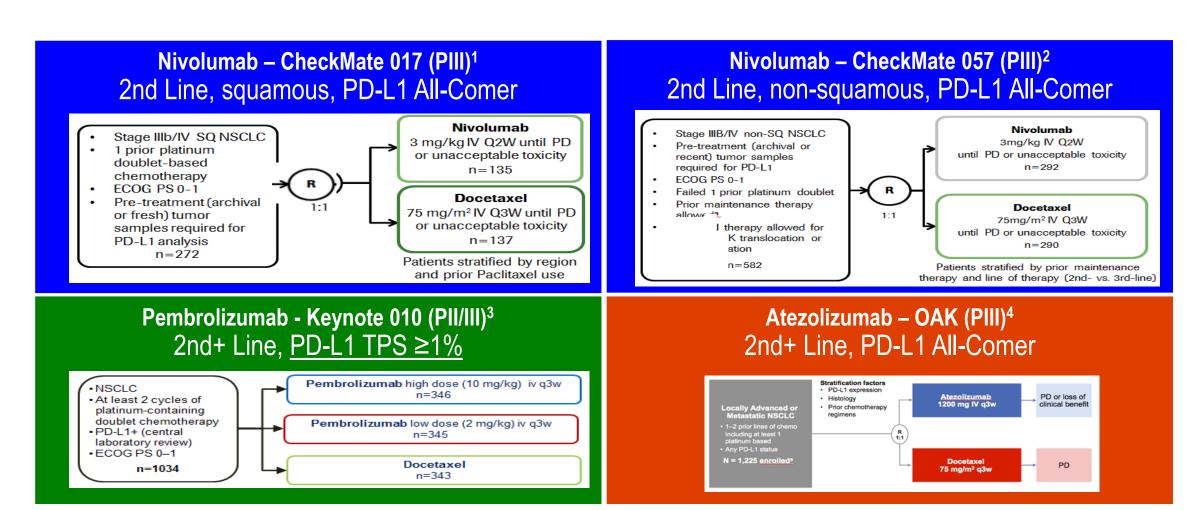
Before Immunotherapy

	Docetaxel	Pemetrexed	Erlotinib		
RR, %	5.0–12.0	7.1–11.8	7.9–9.0		
Median PFS, m	2.0–3.1	2.6–2.9	2.2–3.6		
Median OS, m	5.7–8.0	6.7–8.9	6.7–7.9		
1-year OS,%	28.7–37.0	29.7–38.5	31.0–35.7		

Shepherd, et al. JCO 2000; Fossella, et al. JCO 2000; Ramlau, et al. JCO 2006; Paz-Ares, et al. BJC 2008
Kim, et al. Lancet 2008; Krzakowski, et al. JCO 2010; Hanna, et al. JCO 2004, Cullen, et al. Ann Oncol 2008
Shepherd, et al. NEJM 2005; Vamvakas, et al. ASCO 2010; Ciuleanu, et al. IASLC Chicago 2010; Reck M, et al, Lancet Oncology 2014; Garon E et al, Lancet 2014; Soria JC, Lancet
Oncology 2015

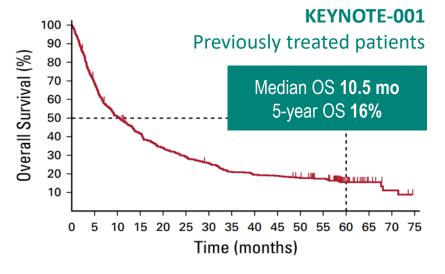
SECOND LINE TREATMENT NSCLC – UPDATED RESULTS

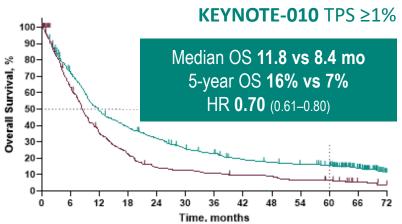
	Docetaxel	Pemetrexed	Erlotinib	Afatinib (SCC)	Docetaxel + Ramucirumab (NSCLC)	Docetaxel + Nintedanib (NSCLC)
RR, %	5.0–12.0	7.1–11.8	7.9–9.0	6	23	4.4 Central Review
Median PFS, m	2.0–3.1	2.6–2.9	2.2–3.6	2.4	4.5	3.4
Median OS, m	5.7–8.0	6.7–8.9	6.7–7.9	7.9	10.5	10.1
1-year OS,%	28.7–37.0	29.7–38.5	31.0–35.7	nr	nr	nr

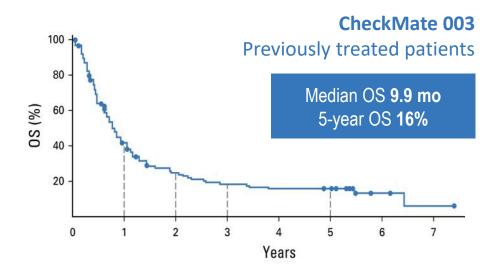

Shepherd, et al. JCO 2000; Fossella, et al. JCO 2000; Ramlau, et al. JCO 2006; Paz-Ares, et al. BJC 2008
Kim, et al. Lancet 2008; Krzakowski, et al. JCO 2010; Hanna, et al. JCO 2004, Cullen, et al. Ann Oncol 2008
Shepherd, et al. NEJM 2005; Vamvakas, et al. ASCO 2010; Ciuleanu, et al. IASLC Chicago 2010; Reck M, et al, Lancet Oncology 2014; Garon E et al, Lancet 2014; Soria JC, Lancet
Oncology 2015

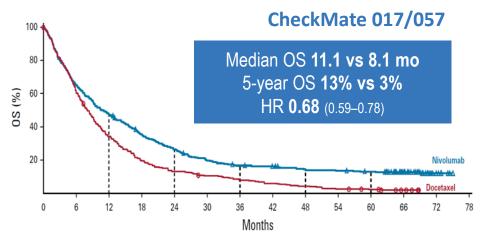
THE THREE PERIODS OF SECOND-LINE TREATMENT

- Before Immunotherapy
- During Immunotherapy

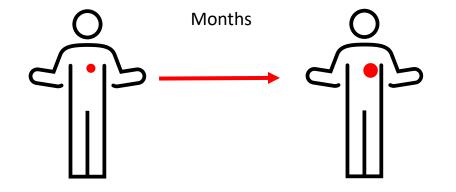

ANTI – PD-1 MONOTHERAPY IN PRETREATED PATIENTS PRIMARY ENDPOINT: OS!




1. Borghaei H et al. Poster presentation at ASCO 2016. 9025. 2. Brahmer JR et al. Oral presentation at AACR 2017. CT077. 3. Herbst RS et al. Poster presentation at ASCO 9090. 4. Rittmeyer A et al. Lancet. 2017;389(10066):255-265.



IMMUNOTHERAPIES – 5-YEAR OS IN PHASE I—III TRIALS A 'TASTE' OF CHRONIC DISEASE



THE THREE PERIODS OF SECOND-LINE TREATMENT

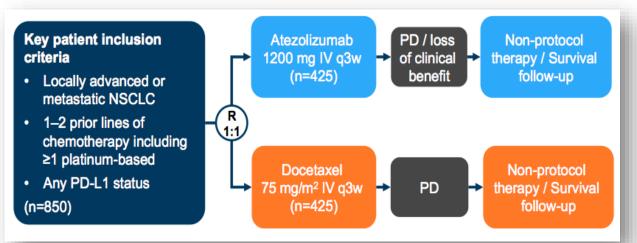
- Before Immunotherapy
- During Immunotherapy
- After Immunotherapy (the reality of today!)

THE CLINICAL (PRAGMATIC) VIEW ON PD AFTER IO AND POTENTIAL TREATMENT IMPLICATIONS

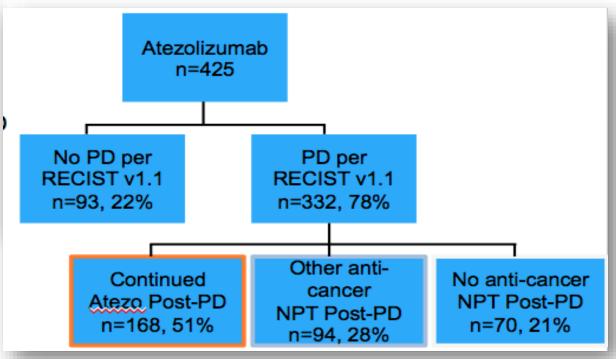
Type 1:

- Slow, asymptomatic PD
- No new tumor related symptoms
- Good tolerability of IO
- Continuation of IO?

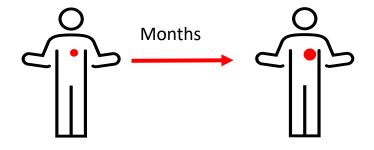
INTERNATIONAL ASSOCIATION FOR THE STUDY OF LUNG CANCER



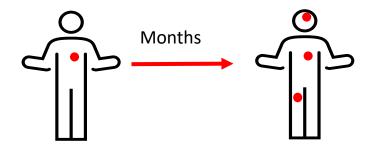
IASLC 18TH WORLD CONFERENCE ON LUNG CANCER


October 15-18, 2017 | Yokohama, Japan

WWW.IASLC.ORG


Oak – Exploratory Analysis

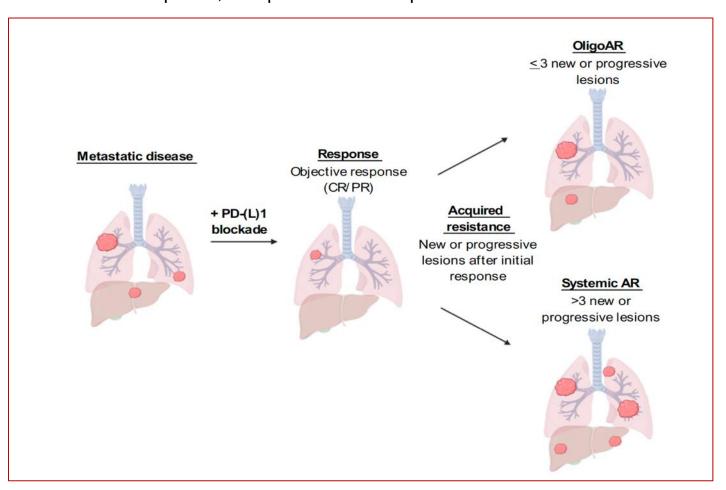
	Atezo Post-PD	Other Post PD	No Treatment Post PD	
Number	168 (51%)	94 (28%)	70 (21%)	
Median OS	12.7 m (9.3 ; 14.9)	8.8 m (6.0 ; 12.1)	2.2 m (1.9 ; 3.4)	
18 m OS	37%	20%	9%	



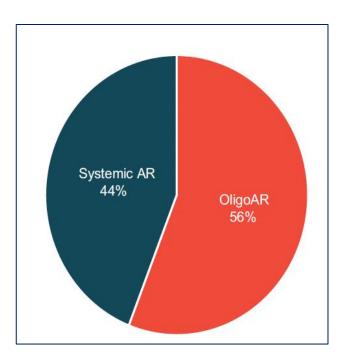
THE CLINICAL (PRAGMATIC) VIEW ON PD AFTER IO AND POTENTIAL TREATMENT IMPLICATIONS

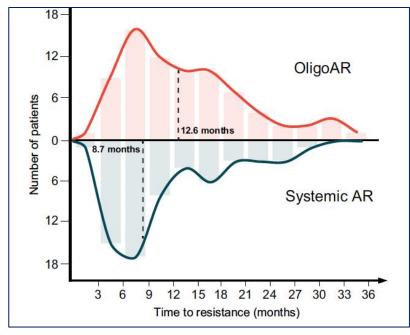
Type 1 / Slow - PD:

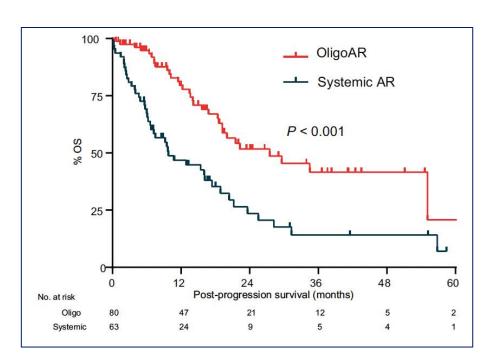
- Slow, asymptomatic PD
- No new tumor related symptoms
- Good tolerability of IO
- Continuation of IO?


Type 2 / Oligo-PD:

- Stabilization/Response of primary tumor
- 1-2 new metastases
- Good tolerability of IO
- Continuation of IO and local therapy?

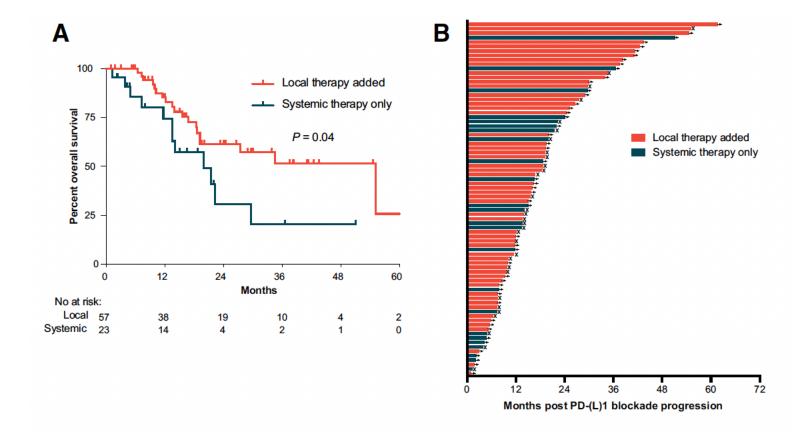

OLIGO PD / OLIGORESISTANCE


1536 patients, 312 patients with initial response, 143 patients with acquired resistance



DIFFERENT CHARACTERISTICS OF OLIGO PD

Oligo PD: No difference in clinical characteristics or PD-L1 expression but higher TMB



Median time to resistance 12.6 vs 8.7 m

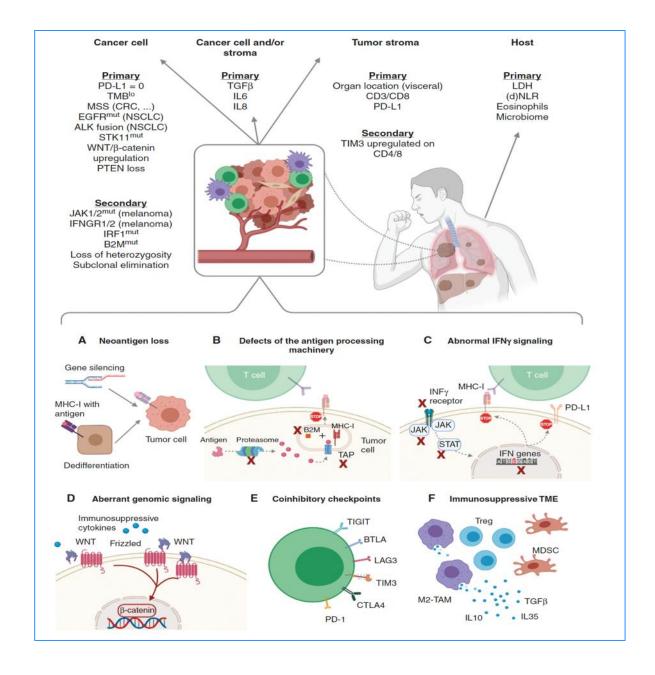

Postprogression survival: 28 vs 10 m

IMPACT OF LOCAL TREATMENT IN OLIGO PD

THE CLINICAL (PRAGMATIC) VIEW ON PD AFTER IO AND POTENTIAL TREATMENT IMPLICATIONS

- Slow, asymptomatic PD
- No new tumor related symptoms
- Good tolerability of IO
- Continuation of IO?

Type 2 / Oligo-PD:


- Stabilization/Response of primary tumor
- 1-2 new metastases
- Good tolerability of IO
- Continuation of IO and local therapy?

Type 3 / Systemic PD

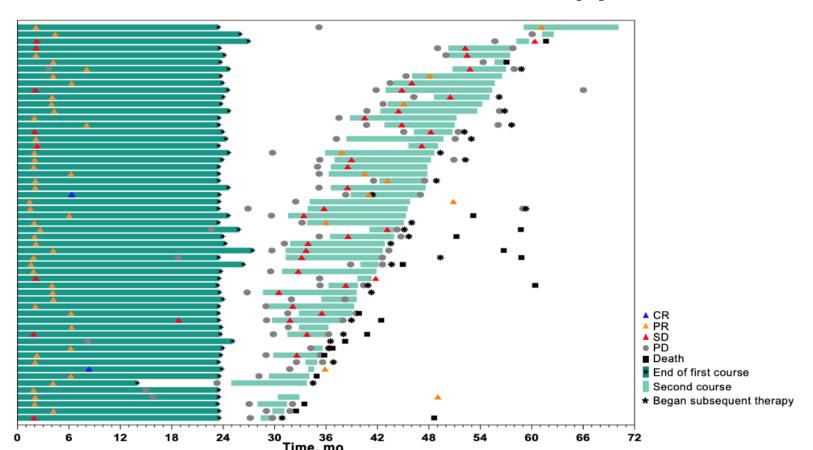
- General PD
- Clinical Symptoms
- Change of treatment?

Do we have a standard of resistance?

Resistence after Immunotherapy
A really complex event

MANAGEMENT - POTENTIAL STRATEGIES

. Re Challenge?



POOLED ANALYSIS REEXPOSITION PEMBROLIZUMAB KN 024, KN 042, KN 598, KN 189, KN 407

Rodriguez Abreu D, Reck M, WCLC 2022

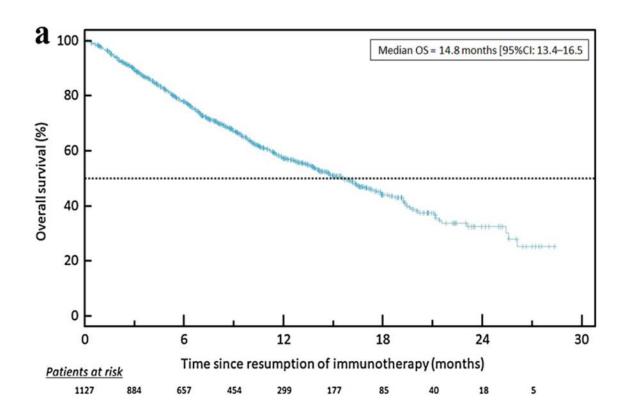
Monotherapy Cohort

	Cohort 1 (pembro monotherapy) N = 57
ORRª (95% CI), %	19 (10–32)
DCRª (95% CI), %	74 (60–85)
Best overall response.an (%)	
CR	0
PR	11 (19)
SD	31 (54)
PD	8 (14)
NA ^b	7 (12)
DOR, a median (range), mo	NR (0.0+ to 20.0+)
DOR ≥6 mo, %	79
PFS,a.c. median (95% CI), mo	10.3 (5.6–14.0)
6-mo rate (95% CI), %	61 (46–73)
OS, median (95% CI), mo	27.5 (21.7-NR)
6-mo rate (95% CI), %	85 (72–92)

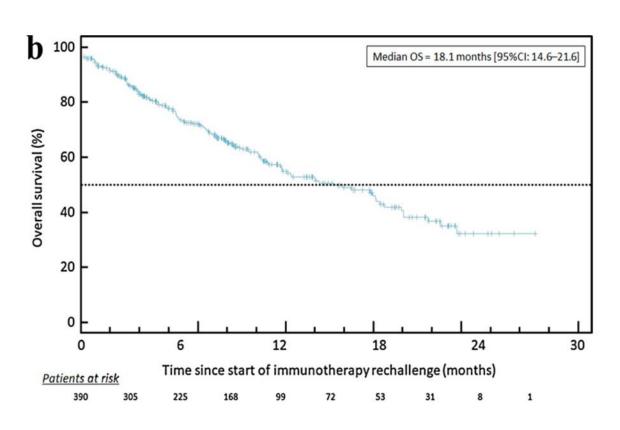
Time from stopping first course pembrolizumab to start of second course: Median 12.0 m (3.8 - 35.6m)

Time from starting second course pembrolizumab to cut off: Median 21.5 m (0.6 - 46.5 m)

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.



REEXPOSITION IN PRETREATED PATIENTS SOME INTERESTING DATA FROM FRANCE


10.452 patients with advanced NSCLC

la/mNSCLC Chemotherapy Ongoing treatment Nivolumab diagnosis (≥1 lines) (≥ 12 mo follow-up) la/mNSCLC Chemotherapy Death or no new treatment Nivolumab (≥ 12 mo follow-up) (≥1 lines) diagnosis la/mNSCLC Chemotherapy Chemotherapy Nivolumab Death or censored (≥1 lines) (≥1 lines) diagnosis la/mNSCLC Chemotherapy Immunotherapy No treatment Death or censored Nivolumab diagnosis (≥1 lines) (≥ 6 weeks) resumption la/mNSCLC Chemotherapy Chemotherapy Immunotherapy Nivolumab Death or censored diagnosis (≥1 lines) (≥1 lines) rechallenge Treatment 1 Treatment 2 OS₁ OS 2

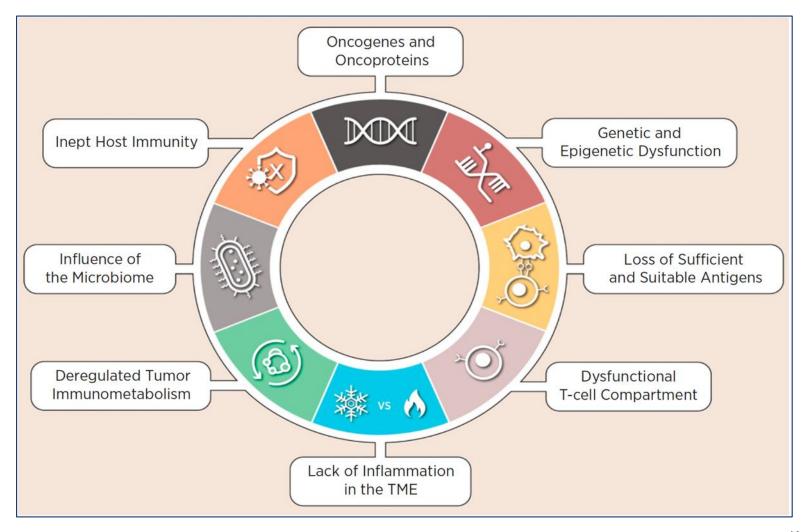
MEDIAN OS2 EVEN BETTER THAN OS1!

Median OS2 / Resumption: 14.8 m

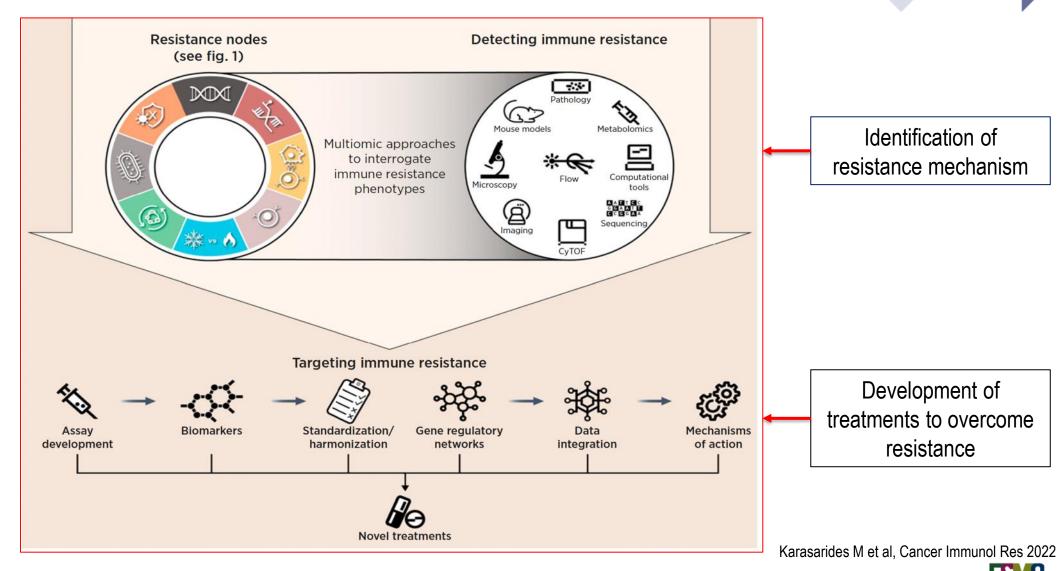
Median OS2 / Rechallenge: 18.1m

Levra MG et al, Lung Cancer 2020

RELEVANT FACTORS DRIVING THE BENEFIT

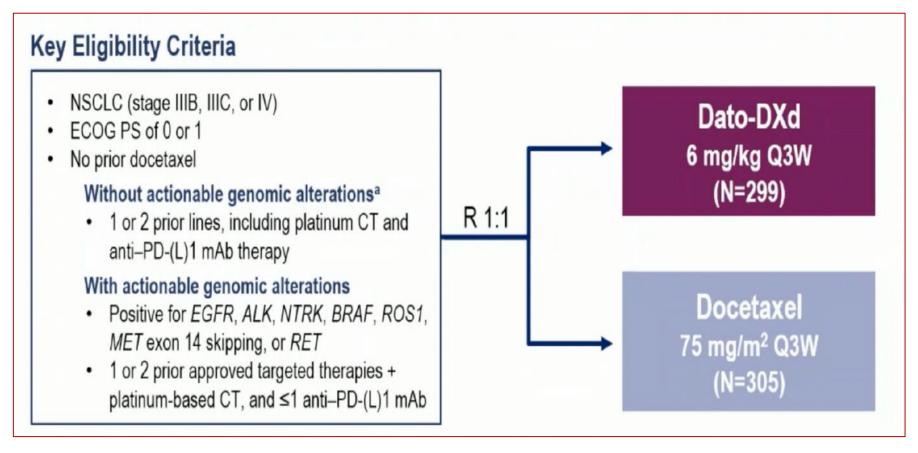

Univariate and multivariate logistic regression analysis of factors of receiving a second PD-1 inhibitor.

Patients' characteristics	All patients with 2 nd PD-1	All patients with post-nivolumab	Univariate analysis		Multivariate analysis	
	inhibitor course ($N = 1517$)	chemotherapy only $(N = 3601)$	OR (95 % CI)	P value	OR (95 % CI)	P value
Age (mean ± SD; years)	63.5 ± 9.7	63.4 ± 9.4	1.00 (0.99–1.01)	0.634	_	_
Gender (men: n, %)	1057 (69.7 %)	2526 (70.2 %)	1.02 (0.90-1.17)	0.737	_	_
Histology (non-squamous; n, %)	810 (53.4 %)	2047 (56.9 %)	1.15 (1.02-1.30)	0.023	NS	NS
Cancer duration						
Less than 1 year	689 (45.4 %)	1729 (48.0 %)	Reference		-	_
1 to 5 years	741 (48.9 %)	1678 (46.6 %)	1.11 (0.98-1.25)	0.103	_	_
5 years and more	87 (5.7 %)	194 (5.4 %)	1.13 (0.86-1.47)	0.388	_	_
Cerebral metastases	254 (16.7 %)	562 (15.6 %)	1.09 (0.93-1.28)	0.310	_	-
Duration of initial nivolumab						
course						
< 3 months	695 (45.8 %)	1888 (52.4 %)	Reference		Reference	
3 – 6 months	390 (25.7 %)	912 (25.3 %)	1.16 (1.00-1.35)	0.046	1.17 (1.01-1.36)	0.035
≥6 months	432 (28.5 %)	801 (22.2 %)	1.47 (1.27-1.70)	< 0.001	1.48 (1.28-1.71)	< 0.00
Comorbidities (yes vs. no)						
Hypertension	297 (19.6 %)	592 (16.4 %)	1.24 (1.06-1.44)	0.007	1.21 (1.03-1.42)	0.019
Diabetes	138 (9.1 %)	289 (8 %)	1.15 (0.93-1.42)	0.206	_	_
Renal failure	68 (4.5 %)	147 (4.1 %)	1.10 (0.82-1.48)	0.515	_	_
COPD	222 (14.6 %)	425 (11.8 %)	1.28 (1.08-1.53)	0.005	1.24 (1.03-1.48)	0.021
Pulmonary insufficiency	24 (1.6 %)	42 (1.2 %)	1.36 (0.82-2.26)	0.230	_	-
Other chronic pulmonary	147 (9.7 %)	274 (7.6 %)	1.30 (1.06-1.61)	0.014	NS	NS
disease						


Levra MG et al, Lung Cancer 2020

MULTIPLE HALLMARKS OF RESISTANCE TO IMMUNOTHERAPY

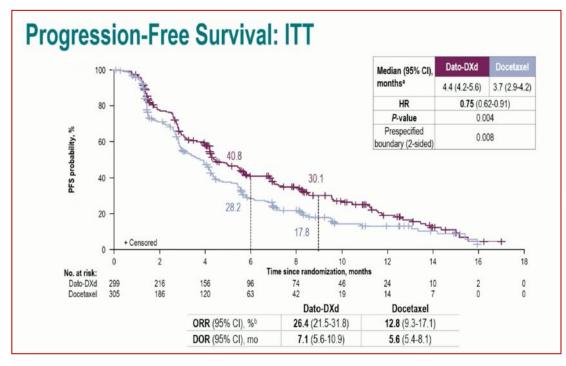
CHALLENGES IN DIAGNOSIS AND THERAPY

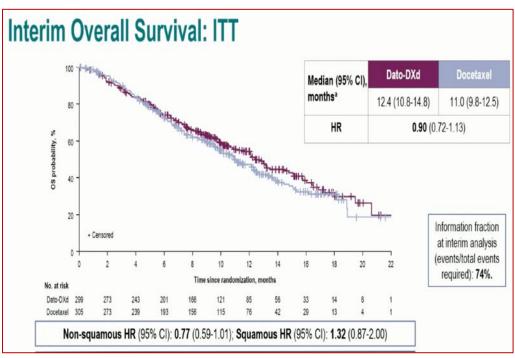

POTENTIAL APPROACHES

- . ADCs the new weapon for everything?
- Antiangiogenic compounds?
- Different approaches?
- . Vaccines?
- . Cellular therapies? (will be covered later)

TROPION LUNG 01 TRIAL

SECOND-LINE TREATMENT AFTER FAILURE OF CT AND CIT




Prim EP: PFS & OS

Results of Interim Analysis

TROPION LUNG 01 - RESULTS

Med PFS: 4.4 vs 3.7 M (HR 0.75, p 0.004)

PFS Squamous: HR 1.38, Non Squamous: HR 0.63

RR: 26.4 vs 12.8%

OS data not mature

TROPION LUNG 01 - ADVERSE EVENTS

TRAEs Occurring in ≥10% of Patients

System organ class	Dato- N=2	Docetaxel N=290		
Preferred term, n (%)	Any grade	Grade ≥3	Any grade	Grade ≥3
Blood and lymphatic system				
Anemia	43 (15)	11 (4)	59 (20)	11 (4)
Neutropenia	12 (4)	2 (1)	76 (26)	68 (23)
Gastrointestinal				
Stomatitis	140 (47)	19 (6)	45 (16)	3 (1)
Nausea	100 (34)	7 (2)	48 (17)	3 (1)
Vomiting	38 (13)	3 (1)	22 (8)	1 (0.3)
Constipation	29 (10)	0	30 (10)	0
Diarrhea	28 (9)	1 (0.3)	55 (19)	4 (1)
General				
Asthenia	55 (19)	8 (3)	55 (19)	5 (2)
Fatigue	34 (11)	2 (1)	40 (14)	6 (2)
Metabolism and nutrition	, ,	, ,		
Decreased appetite	68 (23)	1 (0.3)	45 (16)	1 (0.3)
Skin and subcutaneous			0.000	
Alopecia	95 (32)	0	101 (35)	1 (0.3)b
Rash	36 (12)	0	18 (6)	0
Pruritus	30 (10)	0	12 (4)	0

Characteristic AEs:

- Mucositis
- Stomatitis
- Pneumonitis / ILD
- Skin toxicity
- Eye Toxicity

NEGATIVE TRIALS

EVOKE-01 Sacituzumab Govitecan vs Docetaxel

January 22, 2024

Gilead Provides Update on Phase 3 EVOKE-01 Study

FOSTER CITY, Calif.--(BUSINESS WIRE)-- Gilead Sciences, Inc. (Nasdaq: GILD) today announced that the Phase 3 EVOKE-01 study did not meet its primary endpoint of overall survival (OS) in previously treated metastatic non-small cell lung cancer (NSCLC). EVOKE-01 is evaluating Trodelvy® (sacituzumab govitecan-hziy; SG) vs. docetaxel in patients with metastatic or advanced NSCLC that had progressed on or after platinum-based chemotherapy and checkpoint inhibitor therapy.

CARMEN-LC03 Tusamitamab Ravtansine vs Docetaxel

Press Release

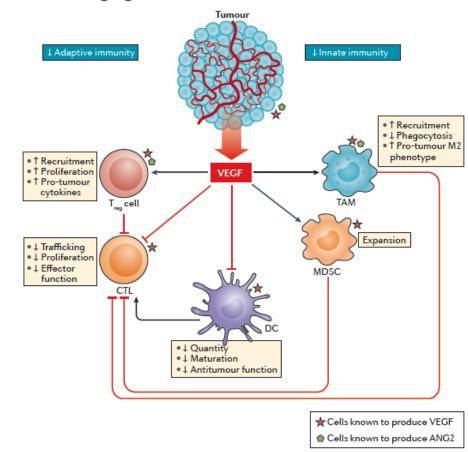
Sanofi announces end of program evaluating tusamitamab ravtansine after a 2L NSCLC Phase 3 trial did not meet a primary endpoint

- CARMEN-LC03 trial did not meet dual primary endpoint of improving progression-free survival; tusamitamab ravtansine clinical development program will be discontinued
- Sanofi reinforces commitment to broader oncology development program including CEACAM5-directed antibody drug conjugates (ADC) with additional anticipated trials

PARIS, December 21, 2023. Sanofi is discontinuing the global clinical development program of tusamitamab ravtansine. The decision is based on the outcome of a prespecified interim analysis of the Phase 3 CARMEN-LC03 trial evaluating tusamitamab ravtansine as monotherapy compared to docetaxel in previously treated patients with metastatic non-squamous (NSq) non-small cell lung cancer (NSCLC) whose tumors express high levels of carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5).

VEGF ACTS AS A KEY MEDIATOR OF AN IMMUNOSUPPRESSIVE TUMOR MICROENVIRONMENT (TME)

VEGF creates an immunosuppressive (pro-tumour) microenvironment¹


Upregulation of immunosuppressive cells:

- Regulatory T-cells (T-regs)
- Myeloid-Derived Suppressor Cells (MDSCs)

Impaired antigen presentation:

- Suppression of dendritic cell (DC) maturation, macrophages (TAMs)
- Impaired T-cell function (CTLs)

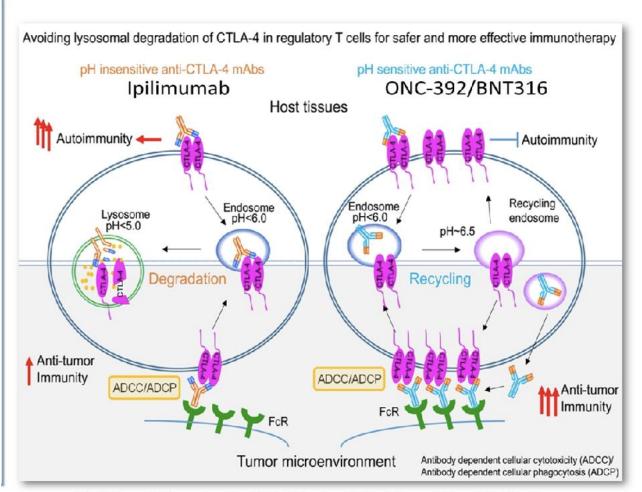
Direct effects of angiogenic factors on immune cells¹

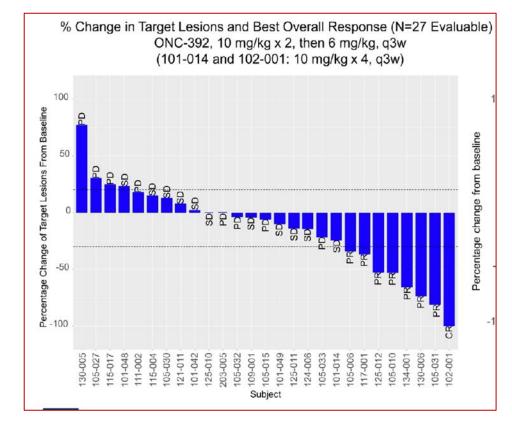
COMBINATION TRIALS - MISSING CONFIRMATION IN PHASE III TRIALS

	COSMIC-021 Cohort 7	LUNG-MAP S1800A	MRTX-500	Phase II	Retrospective	Phase I
Schedule	Cabozantinib Atezolizumab	Ramucirumab Pembrolizumab	Sitravatinib Nivolumab	Bevacizumab Atezolizumab	Ramucirumab Atezolizumab	Lenvatinib Pembrolizumab
N	80	69	68	24	21	21
ORR (%)	19*	22	18	13	4.8	33**
PFS (mo.)	4.5*	4.5	5.7	5.6	3.4	NR
OS (mo.)	13.8*	14.5	14.9	14.0	16.5	NR
G≥3 TRAE (%)	53	42	66	4.2	43	42
Phase III	CONTACTI	Pragmatica-	SAPPHIRE			LEAP-007

^{*}RR: PD-L1<1%: 11%; PD-L1≥1%: 20%. PFS: PD-L1<1%: 4.7; PD-L1≥1%: 5.4. OS: PD-L1<1%: 10.4; PD-L1≥1%: 17.8

Slide courtesy J Remon, Hendricks L adapted

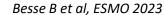


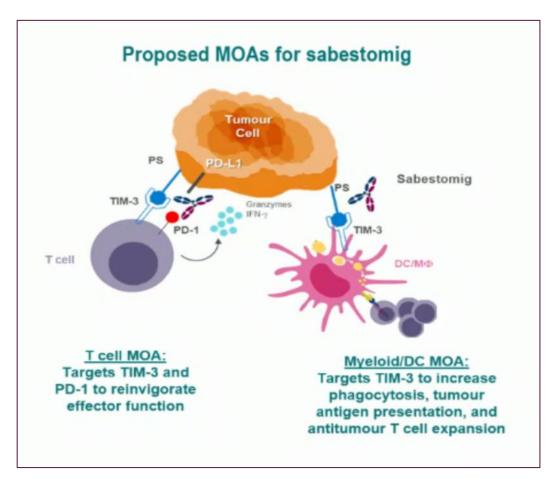

^{**} Includes treatment naïve population.

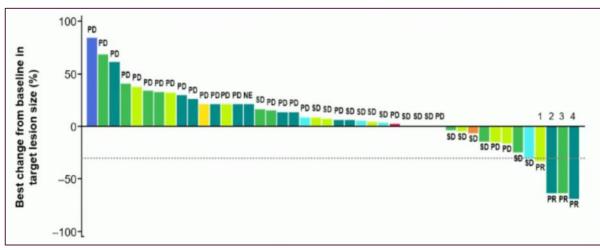
SELECTED POTENTIAL CONCEPTS ONC-392/BNT316

He K et al, abstract 9024, ASCO 2023

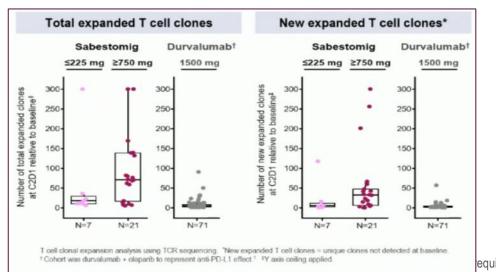
Mechanism of action


- Long treatment duration despite extensive first-line immunotherapy in some patients
- GI Tox CTC Grade 3/4: 43%, irAE CTC Grade 3/4: 34%
- Moving to phase III trial


f this presentation is copyright and responsibility of the author. Permission is required for re-use

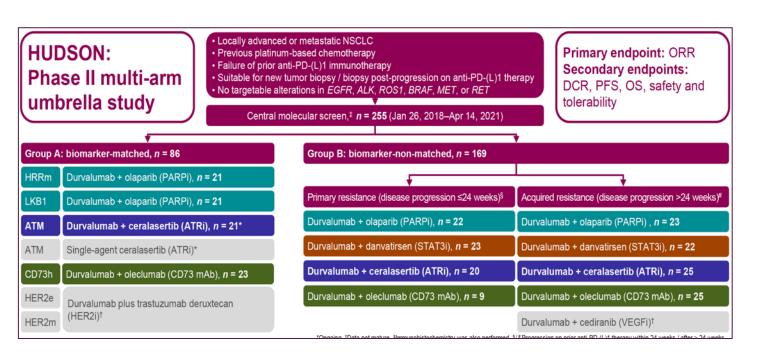

SELECTED POTENTIAL CONCEPTS

SABESTOMIG - AZD7789 (ANTI PD-1 & ANTI TIM)

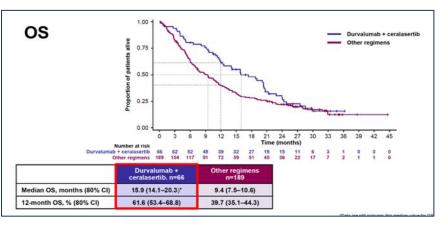


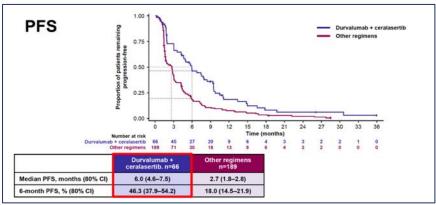
45 patients, prior treatment with anti PD(L)-1 Median 2 lines of prior therapy (1-6)

Response: 4/36 (11%) (Dose =/> 750 mg)

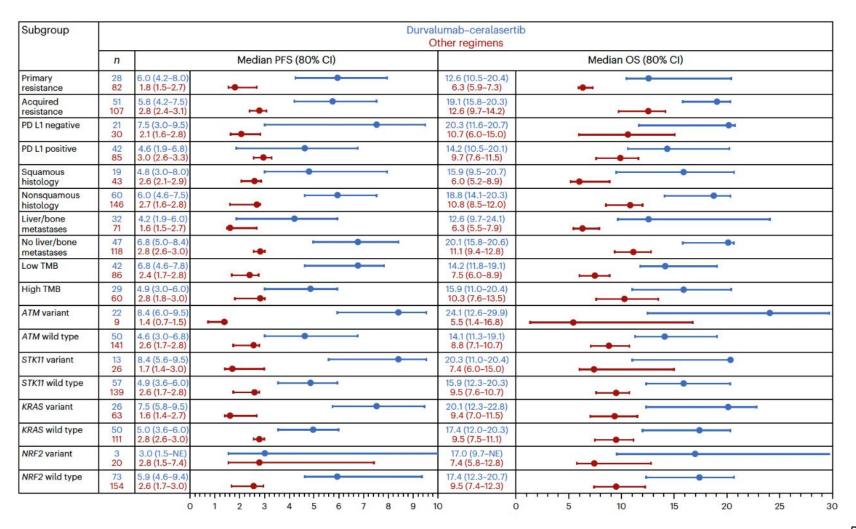


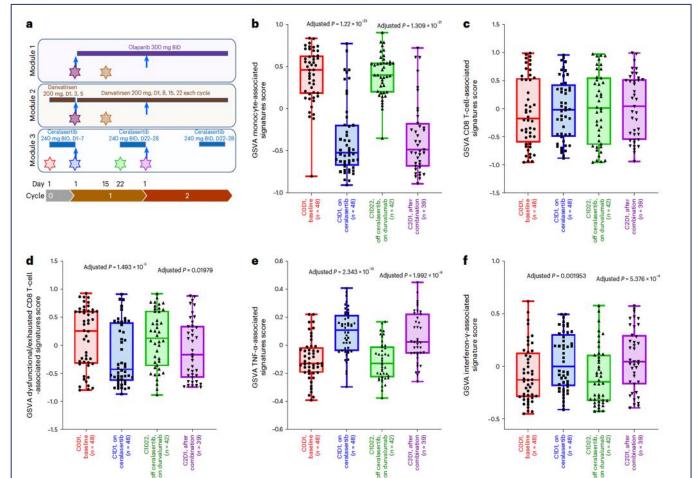
Expansion of T-Cell Clones

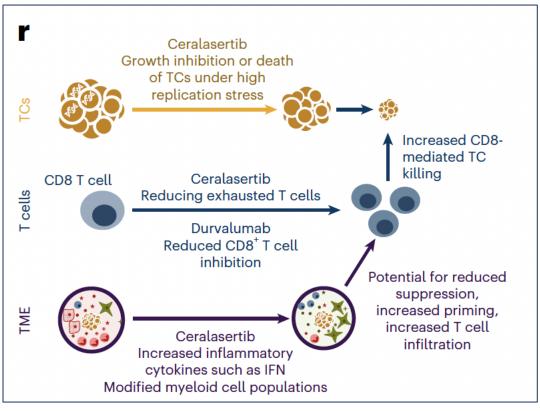


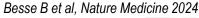

SELECTED POTENTIAL CONCEPTS HUDSON - PLATFORM STUDY

Besse B et al, WCLC 2022

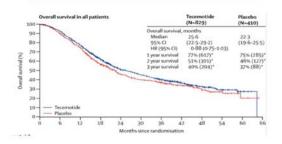

Ceralasertib + Durvalumab

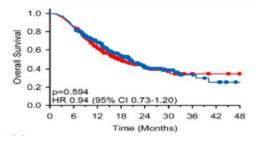


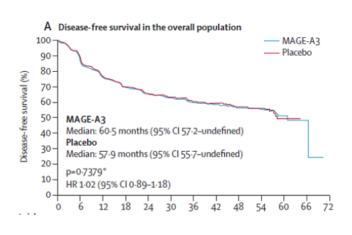

OS (median/1 y OS): 15.9 m/62% - 9.4 m/39.7% (other) PFS (median/1 y PFS): 6.0 m/46.3% - 2.7 m/18.9% (other)



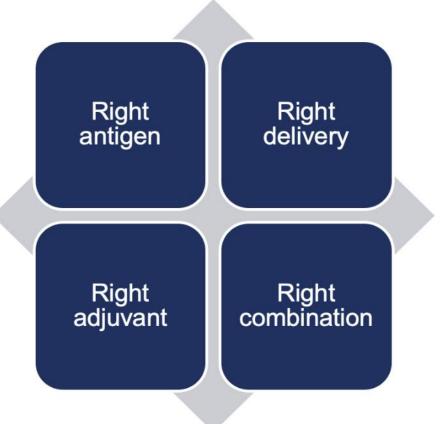
HUDSON - CHANGES IN TME AND CLONALITY



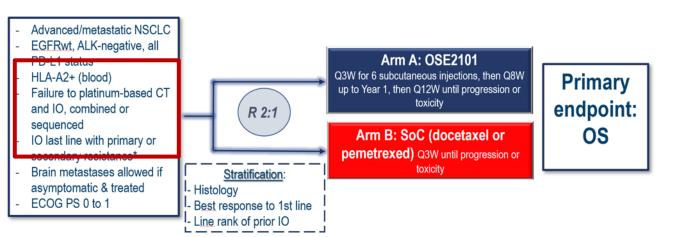

VACCINATION IN NSCLC -SO FAR NOT A SUCCESS STORY


Butts, Lancet Onc, 2013

Belagenpumatucel-L Whole cell vaccine

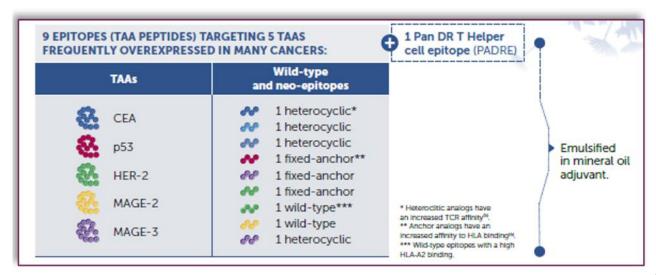

Giaccone, European Journal of cancer_2015

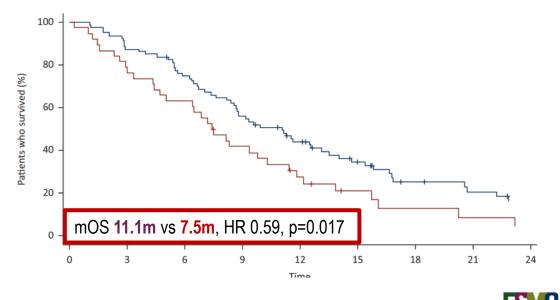
(MAGE-A3) peptide



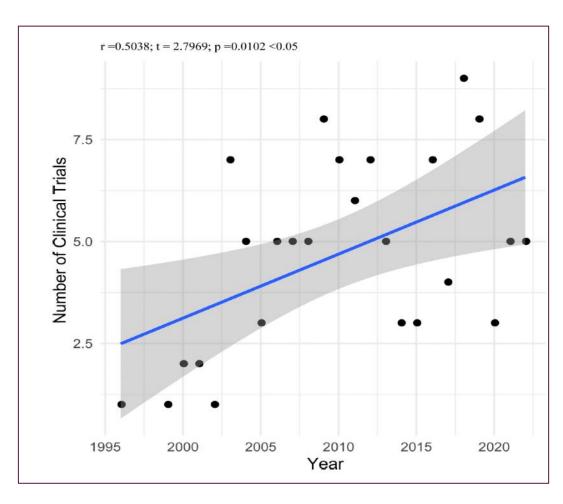
Vansteenkiste JF, et al. Lancet Oncol 2016

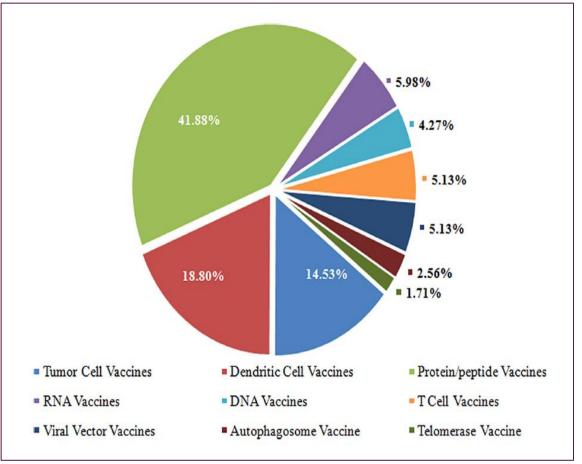
Relevant steps in optimization




VACCINES – PH III ATALANTE TRIAL

COVID: prematurely closed (219/400 enrolled)
Final primary analysis in IO secondary resistance
(>12 weeks IO, N=118, 68% of total)


Stats revised: HR 0.55, power 80%, 2-sided level 5%



Evolution of NSCLC Vaccines studies

(www.trial.gov registered)

CONCLUSIONS

- Second Line Treatment represents an effective and important part of lung cancer treatment
- Second Line Treatment should be offered to all eligible patients (we should be able to beat the 50%)
- Second Line Treatment has undergone signficant changes with the implementation of immunotherapies
- Second Line Treatment will have to undergo significant changes with the introduction of immunotherapies in first-line treatment

Thank you!

Martin Reck, <u>m.reck@lungenclinic.de</u>
Twitter: @MartinReck2

Contacts ESMO

European Society for Medical Oncology Via Ginevra 4, CH-6900 Lugano T. +41 (0)91 973 19 00 esmo@esmo.org

